Nonlinear Homotopic Continuation Methods: A Chemical Engineering Perspective Review

It is difficult to imagine mathematics or engineering to date without nonlinear algebraic systems; these topics have deserved more diverse and vigorous interest over the years. In fact, one of the most important modern branches of mathematics originated in this context, topology, which has been inseparable from homotopy theory, describes a powerful intuitive tool to solve nonlinear algebraic systems. In the present work, we attempt to briefly summarize the theoretical beginnings of homotopy, its eventual transformation into a numerical method, its most reiterative applications in chemical engineering, and some current challenges in this field from an engineering-friendly perspective, especially approachable for chemical engineers.

[1]  F. Ficken The continuation method for functional equations , 1951 .

[2]  W. Rheinboldt An adaptive continuation process for solving systems of nonlinear equations , 1978 .

[3]  Neil L. Book,et al.  Unreachable roots for global homotopy continuation methods , 1991 .

[4]  Wenrui Hao,et al.  Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation , 2013, J. Comput. Appl. Math..

[5]  Mohd. Salmi Md. Noorani,et al.  The homotopy analysis method for Cauchy reaction–diffusion problems , 2008 .

[6]  Jorge R. Paloschi,et al.  Bounded homotopies to solve systems of sparse algebraic nonlinear equations , 1997 .

[7]  M. Kuno,et al.  Computing all real solutions to systems of nonlinear equations with a global fixed-point homotopy , 1988 .

[8]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[9]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[10]  Jaijeet S. Roychowdhury,et al.  Delivering global DC convergence for large mixed-signal circuits via homotopy/continuation methods , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Héctor Vázquez-Leal,et al.  Rational Homotopy Perturbation Method , 2012, J. Appl. Math..

[12]  J. Yorke,et al.  Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .

[13]  A. Spence,et al.  The Numerical Calculation of Cusps, Bifurcation Points and Isola Formation Points in Two Parameter Problems , 1984 .

[14]  B. Han,et al.  A homotopy-projection method for the parameter estimation problems , 2008 .

[15]  J. Seader,et al.  Use of homotopy-continuation method in stability analysis of multiphase, reacting systems , 2000 .

[16]  M. Kojima,et al.  Computing all nonsingular solutions of cyclic- n polynomial using polyhedral homotopy continuation methods , 2003 .

[17]  Ji-Huan He Approximate solution of nonlinear differential equations with convolution product nonlinearities , 1998 .

[18]  Amin Najafi,et al.  A novel cubically convergent iterative method for computing complex roots of nonlinear equations , 2010, Appl. Math. Comput..

[19]  V. Dovi' Numerical solution of mass balance equations in continuous stirred reactors with radical intermediates , 1998 .

[20]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[21]  Ralph E. White,et al.  A Robust Homotopy Continuation Method for Seeking All Real Roots of Unconstrained Systems of Nonlinear Algebraic and Transcendental Equations , 2011 .

[22]  J. Ilavský,et al.  Global simulation of countercurrent separation processes via one-parameter imbedding techniques , 1981 .

[23]  Sanford Gordon,et al.  CALCULATION OF COMPLEX CHEMICAL EQUILIBRIA , 1968 .

[24]  R. E. White,et al.  A new homotopy for seeking all real roots of a nonlinear equation , 2011, Comput. Chem. Eng..

[25]  Jacques Rappaz,et al.  On the rotating beam: Some theoretical and numerical results , 1984 .

[26]  Juha Tanskanen,et al.  Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies , 2010, Comput. Chem. Eng..

[27]  Farhang Jalali,et al.  Process simulation using continuation method in complex domain , 1998 .

[29]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[30]  Saeed Khaleghi Rahimian,et al.  Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain , 2008, Comput. Chem. Eng..

[31]  Cayley Desiderata and Suggestions: No. 3.The Newton-Fourier Imaginary Problem , 1879 .

[32]  S. Liao An approximate solution technique not depending on small parameters: A special example , 1995 .

[33]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[34]  Héctor Vázquez-Leal,et al.  Exploring collision-free path planning by using homotopy continuation methods , 2013, Appl. Math. Comput..

[35]  U. Filobello-Niño,et al.  Modified HPMs Inspired by Homotopy Continuation Methods , 2012 .

[36]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[37]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[38]  Juha Tanskanen,et al.  Modified bounded homotopies to enable a narrow bounding zone , 2008 .

[39]  John B. Gustafson,et al.  Evaluating all real roots of nonlinear equations using a global fixed‐point homotopy method , 1991 .

[40]  Ilkka Malinen Improving the robustness with modified bounded homotopies and problem-tailored solving procedures , 2010 .

[41]  C. Floudas,et al.  GLOPEQ: A new computational tool for the phase and chemical equilibrium problem , 1997 .

[42]  Jani Kangas,et al.  Modified Bounded Homotopies in the Solving of Phase Stability Problems for Liquid–Liquid Phase-Splitting Calculations , 2011 .

[43]  A WEIGHTED ALGORITHM BASED ON THE HOMOTOPY ANALYSIS METHOD: APPLICATION TO INVERSE HEAT CONDUCTION PROBLEMS , 2010 .

[44]  Mansour Nikkhah Bahrami,et al.  An effective iterative method for computing real and complex roots of systems of nonlinear equations , 2009, Appl. Math. Comput..

[45]  Kiyotaka Yamamura Simple algorithms for tracing solution curves , 1993 .

[46]  M. Kubicek,et al.  Computing heterogeneous azeotropes in multicomponent mixtures , 1997 .

[47]  Steven A. Johnson,et al.  Mapped continuation methods for computing all solutions to general systems of nonlinear equations , 1990 .

[48]  John J. Tyson,et al.  Finding all steady state solutions of chemical kinetic models , 2004 .

[49]  Rüdiger Seydel,et al.  Role of continuation in engineering analysis , 1987 .

[50]  Dianne P. O'Leary,et al.  HOPE: A Homotopy Optimization Method for Protein Structure Prediction , 2005, J. Comput. Biol..

[51]  Seth R. Sanders,et al.  Multi-parameter homotopy methods for finding DC operating points of nonlinear circuits , 1993, ISCAS.

[52]  H. Brolin Invariant sets under iteration of rational functions , 1965 .

[53]  S. Abbasbandy,et al.  MLPG method for two-dimensional diffusion equation with Neumann's and non-classical boundary conditions , 2011 .

[54]  A. Merzougui,et al.  Homotopy method to predict liquid–liquid equilibria for ternary mixtures of (water + carboxylic acid + organic solvent) , 2012 .

[55]  Shijun Liao,et al.  Boundary element method for general nonlinear differential operators , 1997 .

[56]  Jorge R. Paloschi,et al.  Using sparse bounded homotopies in the SPEEDUP simulation package , 1998 .

[57]  Neil L. Book,et al.  A robust path tracking algorithm for homotopy continuation , 1996 .

[58]  Ji-Huan He,et al.  Comparison of homotopy perturbation method and homotopy analysis method , 2004, Appl. Math. Comput..

[59]  Yasuaki Inoue,et al.  A practical algorithm for DC operating‐point analysis of large‐scale circuits , 1994 .

[60]  Werner C. Rheinboldt,et al.  Numerical continuation methods: a perspective , 2000 .

[61]  Michael A. Savageau,et al.  Finding multiple roots of nonlinear algebraic equations using S-system methodology , 1993 .

[62]  J. W. Kovach Heterogenous azeotropic distillaion-homotopy-continuation methods , 1987 .

[63]  T. L. Wayburn,et al.  Multiple steady-state solutions for interlinked separation systems , 1986 .

[64]  Arturo Sarmiento-Reyes,et al.  Homotopy method with a formal stop criterion applied to circuit simulation , 2011, IEICE Electron. Express.

[65]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1911 .

[66]  Alex James,et al.  Stability of multiple steady states of catalytic combustion , 2002 .

[67]  K. Cliffe,et al.  The use of symmetry in bifurcation calculations and its application to the Be´nard problem , 1986 .

[68]  L. E. J. Brouwer,et al.  Beweis der Invarianz der Dimensionenzahl , 1911 .

[69]  Wolfgang Marquardt,et al.  Experimental Verification of Multiple Steady States in Heterogeneous Azeotropic Distillation , 1997 .

[70]  C. Haselgrove,et al.  The Solution of Non-Linear Equations and of Differential Equations with Two-Point Boundary Conditions , 1961, Comput. J..

[71]  J. Seader,et al.  Global homotopy continuation procedures for seeking all roots of a nonlinear equation , 2001 .

[72]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[73]  J. Manuel Oliveros-Muñoz,et al.  Hyperspherical path tracking methodology as correction step in homotopic continuation methods , 2013 .