The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs

M dwarf stars are known for their vigorous flaring. This flaring could impact the climate of orbiting planets, making it important to characterize M dwarf flares at the short wavelengths that drive atmospheric chemistry and escape. We conducted a far-ultraviolet flare survey of 6 M dwarfs from the recent MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) observations, as well as 4 highly-active M dwarfs with archival data. When comparing absolute flare energies, we found the active-M-star flares to be about 10$\times$ more energetic than inactive-M-star flares. However, when flare energies were normalized by the star's quiescent flux, the active and inactive samples exhibited identical flare distributions, with a power-law index of -$0.76^{+0.1}_{-0.09}$ (cumulative distribution). The rate and distribution of flares are such that they could dominate the FUV energy budget of M dwarfs, assuming the same distribution holds to flares as energetic as those cataloged by Kepler and ground-based surveys. We used the observed events to create an idealized model flare with realistic spectral and temporal energy budgets to be used in photochemical simulations of exoplanet atmospheres. Applied to our own simulation of direct photolysis by photons alone (no particles), we find the most energetic observed flares have little effect on an Earth-like atmosphere, photolyzing $\sim$0.01% of the total O$_3$ column. The observations were too limited temporally (73 h cumulative exposure) to catch rare, highly energetic flares. Those that the power-law fit predicts occur monthly would photolyze $\sim$1% of the O$_3$ column and those it predicts occur yearly would photolyze the full O$_3$ column. Whether such energetic flares occur at the rate predicted is an open question.

[1]  Feng Tian,et al.  History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs , 2015 .

[2]  P. J. Wheatley,et al.  Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b , 2012, 1206.6274.

[3]  I. Neill Reid,et al.  IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 PC. I. SPECTROSCOPIC OBSERVATIONS , 2009, 0904.3323.

[4]  N. Achilleos,et al.  IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES , 2010 .

[5]  S. Redfield,et al.  A Decade of Hα Transits for HD 189733 b: Stellar Activity versus Absorption in the Extended Atmosphere , 2017, 1703.09543.

[6]  F. Adams,et al.  Hot Jupiter breezes: Time-dependent outflows from extrasolar planets , 2015, 1512.03070.

[7]  T. Ayres THE FLARE-ONA OF EK DRACONIS , 2015, 1505.02320.

[8]  O. Siegmund,et al.  Extreme Ultraviolet Explorer Deep Survey Observations of a Large Flare on AU Microscopii , 1993 .

[9]  M. Audard,et al.  Relationship between X-ray and ultraviolet emission of flares from dMe stars observed by XMM-Newton , 2004, astro-ph/0410592.

[10]  D. Ciardi,et al.  Stellar diameters and temperatures - V. 11 newly characterized exoplanet host stars , 2013, 1312.1792.

[11]  Kevin France,et al.  LYα TRANSIT SPECTROSCOPY AND THE NEUTRAL HYDROGEN TAIL OF THE HOT NEPTUNE GJ 436b , 2014, 1403.6834.

[12]  R. Rebolo,et al.  Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators , 2015, 1506.08039.

[13]  Oswald H. W. Siegmund,et al.  The Detection of M Dwarf UV Flare Events in the GALEX Data Archives , 2006, astro-ph/0605328.

[14]  J. Drake,et al.  Suppression of Coronal Mass Ejections in Active Stars by an Overlying Large-scale Magnetic Field: A Numerical Study , 2018, The Astrophysical Journal.

[15]  S. Hawley,et al.  M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES , 2016, 1602.04879.

[16]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[17]  M. Yıldız Models of α Centauri A and B with and without seismic constraints: time dependence of the mixing-length parameter , 2007 .

[18]  E. Avrett,et al.  Models of the Solar Chromosphere and Transition Region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen , 2008 .

[19]  D. S. Bloomfield,et al.  Opacity in the upper atmosphere of AU Mic , 2002 .

[20]  J. Ryan,et al.  Solar Energetic Particles , 2000 .

[21]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[22]  Jaymie M. Matthews,et al.  MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI , 2016, 1608.06672.

[23]  P. Démoulin,et al.  The standard flare model in three dimensions II: upper limit on solar flare energy , 2012, 1212.2086.

[24]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[25]  J. Kasting,et al.  M stars as targets for terrestrial exoplanet searches and biosignature detection. , 2007, Astrobiology.

[26]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[27]  Leon Golub,et al.  Coordinated Einstein and IUE observations of a disparitions brusques type flare event and quiescent emission from Proxima Centauri , 1983 .

[28]  New Mass-Loss Measurements from Astrospheric Lyα Absorption , 2005, astro-ph/0506401.

[29]  Kevin France,et al.  FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS , 2014, 1402.0073.

[30]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[31]  Andrew A. West,et al.  M DWARF FLARES FROM TIME-RESOLVED SLOAN DIGITAL SKY SURVEY SPECTRA , 2010 .

[32]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[33]  T. Louden,et al.  Reconstructing the high-energy irradiation of the evaporating hot Jupiter HD 209458b , 2016, 1605.07987.

[34]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[35]  L. Kaltenegger,et al.  EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS , 2015, 1506.07202.

[36]  J. Linsky,et al.  The effect of Lyman α radiation on mini-Neptune atmospheres around M stars: application to GJ 436b , 2014, 1410.2112.

[37]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. II. INTRINSIC LYα AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS , 2016, 1604.01032.

[38]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[39]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[40]  H. Hudson Solar flares, microflares, nanoflares, and coronal heating , 1991 .

[41]  S. Hawley,et al.  Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares , 1995 .

[42]  A. Dupree,et al.  A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars , 2004, astro-ph/0412539.

[43]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[44]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[45]  David L. Jauncey,et al.  Maximum-Likelihood Estimation of the Number-Flux Distribution of Radio Sources in the Presence of Noise and Confusion , 1973 .

[46]  S. Hawley,et al.  From Radio to X-Ray: Flares on the dMe Flare Star EV Lacertae , 2004, astro-ph/0411236.

[47]  P. Lavvas,et al.  The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere , 2012, 1210.1536.

[48]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[49]  J.-U. Ness,et al.  On the sizes of stellar X-ray coronae , 2004 .

[50]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[51]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[52]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[53]  R. D. Robinson,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Late-Type Dwarf Stars , 2002 .

[54]  William C. Danchi,et al.  Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun , 2016 .

[55]  R. Gershberg Some results of the cooperative photometric observations of the UV Cet-type flare stars in the years 1967–71 , 1972 .

[56]  Brazil,et al.  Metallicity of M dwarfs - IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs , 2014, 1406.6127.

[57]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. IV. Monster Flares Observed on the Young Brown Dwarf CFHT-BD-Tau 4 , 2018, The Astrophysical Journal.

[58]  A. Rowlinson,et al.  THE SEARCH FOR SIGNATURES OF TRANSIENT MASS LOSS IN ACTIVE STARS , 2016, 1606.02334.

[59]  Olivier Godet,et al.  THE MOUSE THAT ROARED: A SUPERFLARE FROM THE dMe FLARE STAR EV LAC DETECTED BY SWIFT AND KONUS-WIND , 2010, 1007.5300.

[60]  J. Sanz-Forcada,et al.  Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b , 2017, 1710.08365.

[61]  K. Stȩpień,et al.  Age-Rotation-Activity Relations for M Dwarf Stars Based on ASAS Photometric Data , 2007, 0707.2577.

[62]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[63]  Philip A. Ianna,et al.  The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample , 2006, astro-ph/0608230.

[64]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[65]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. III. X-RAY TO INFRARED SPECTRA OF 11 M AND K STARS HOSTING PLANETS , 2016, 1604.04776.

[66]  J. Fortney,et al.  Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. , 2015, Astrobiology.

[67]  Pavel Kroupa,et al.  Estimators for the exponent and upper limit, and goodness-of-fit tests for (truncated) power-law distributions , 2009, 0905.0474.

[68]  P. Schneider,et al.  The MUSCLES Treasury Survey. IV. Scaling Relations for Ultraviolet, Ca ii K, and Energetic Particle Fluxes from M Dwarfs , 2017, 1705.04361.

[69]  V. Kashyap,et al.  Extreme-Ultraviolet Flare Activity in Late-Type Stars , 2000 .

[70]  É. Houdebine Observation and modelling of main-sequence star chromospheres – XIV. Rotation of dM1 stars★ , 2010 .

[71]  F. Walter On the coronae of rapidly rotating stars. III - An improved coronal rotation-activity relation in late type dwarfs , 1982 .

[72]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[73]  David A. Golimowski,et al.  ERRATUM: “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD” (2010, AJ, 139, 2679) , 2010, 1004.4002.

[74]  Caltech,et al.  THE GJ 436 SYSTEM: DIRECTLY DETERMINED ASTROPHYSICAL PARAMETERS OF AN M DWARF AND IMPLICATIONS FOR THE TRANSITING HOT NEPTUNE , 2012, 1202.0083.

[75]  S. Ida,et al.  Water contents of Earth-mass planets around M dwarfs , 2015 .

[76]  E. Parker Topological dissipation and the small-scale fields in turbulent gases. , 1972 .

[77]  J. Haislip,et al.  The First Naked-eye Superflare Detected from Proxima Centauri , 2018, The Astrophysical Journal.

[78]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[79]  G. Preston,et al.  A SURVEY OF CHROMOSPHERIC CA II H AND K EMISSION IN FIELD STARS OF THE SOLAR NEIGHBORHOOD. , 1980 .

[80]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[81]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[82]  Evgenya L. Shkolnik,et al.  HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX , 2018, 1801.06711.

[83]  A. Loeb,et al.  Risks for Life on Habitable Planets from Superflares of Their Host Stars , 2017, 1708.04241.

[84]  T. Gold Magnetic energy shedding in the solar atmosphere , 1964 .

[85]  Drake Deming,et al.  A reappraisal of the habitability of planets around M dwarf stars. , 2006, Astrobiology.

[86]  Dimitar Sasselov,et al.  PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b , 2016, 1607.03906.

[87]  Kevin France,et al.  TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM , 2012, 1204.1976.

[88]  L. Decin,et al.  INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA , 2016, 1607.08147.

[89]  D. Mullan,et al.  ROTATION–ACTIVITY CORRELATIONS IN K AND M DWARFS. I. STELLAR PARAMETERS AND COMPILATIONS OF v sin i AND P/sin i FOR A LARGE SAMPLE OF LATE-K AND M DWARFS , 2016, 1604.07920.

[90]  Wesley A. Traub,et al.  TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER , 2011, 1109.4682.

[91]  William C. Danchi,et al.  How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape , 2017 .

[92]  P. Schneider,et al.  The XUV environments of exoplanets from Jupiter-size to super-Earth , 2018, 1804.11124.

[93]  Kevin France,et al.  THE INTRINSIC EXTREME ULTRAVIOLET FLUXES OF F5 V TO M5 V STARS , 2013, 1310.1360.

[94]  Evgenya L. Shkolnik,et al.  HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive , 2017, 1705.03583.

[95]  N. Gehrels,et al.  A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn , 2016, 1609.04674.

[96]  D. Hunten Thermal and nonthermal escape mechanisms for terrestrial bodies , 1982 .

[97]  V. Kashyap,et al.  Are Coronae of Magnetically Active Stars Heated by Flares? II. Extreme Ultraviolet and X-Ray Flare Statistics and the Differential Emission Measure Distribution , 2003 .

[98]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[99]  K. Stassun,et al.  Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation , 2010, 1011.0424.

[100]  Aomawa L. Shields,et al.  The Habitability of Planets Orbiting M-dwarf Stars , 2016, 1610.05765.

[101]  Peter R. Young,et al.  CHIANTI - an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data , 2009 .

[102]  D. S. Bloomfield,et al.  Opacity in the upper atmospheres of active stars - II. AD Leonis , 2006, astro-ph/0602447.

[103]  Xudong Sun,et al.  WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR? , 2015, 1502.06950.

[104]  J. Drake,et al.  IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS , 2013, 1302.1136.

[105]  H. Hudson,et al.  The Characteristics of Solar X-Class Flares and CMEs: A Paradigm for Stellar Superflares and Eruptions? , 2016 .

[106]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW , 2016, 1602.09142.

[107]  Scott J. Wolk,et al.  CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS , 2015, 1506.04994.

[108]  J. Bochanski,et al.  M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS , 2009, 0906.2030.

[109]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[110]  Kyle McCarthy,et al.  THE SIZES OF THE NEAREST YOUNG STARS , 2012, 1201.6600.

[111]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[112]  M.Turatto,et al.  RACE-OC project: rotation and variability in the ϵ Chamaeleontis, Octans, and Argus stellar associations , 2011, 1104.2986.

[113]  M. Wheatland,et al.  To appear in the Astrophysical Journal Letters THE ORIGIN OF THE SOLAR FLARE WAITING-TIME DISTRIBUTION , 2000 .

[114]  J. Sanz-Forcada,et al.  XUV-driven mass loss from extrasolar giant planets orbiting active stars , 2014, 1412.3380.

[115]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[116]  J. Beuzit,et al.  Mass-radius relation of low and very low-mass stars revisited with the VLTI , 2009, 0906.0602.

[117]  P. Berlind,et al.  THE Hα EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION , 2016, 1611.03509.

[118]  E. Gaidos,et al.  OBJECTS IN KEPLER'S MIRROR MAY BE LARGER THAN THEY APPEAR: BIAS AND SELECTION EFFECTS IN TRANSITING PLANET SURVEYS , 2012, 1211.2279.