Simultaneous navigation and synthetic aperture radar focusing

Synthetic aperture radar (SAR) equipment is a radar imaging system that can be used to create high-resolution images of a scene by utilizing the movement of a flying platform. Knowledge of the platform's trajectory is essential to get good and focused images. An emerging application field is real-time SAR imaging using small and cheap platforms where estimation errors in navigation systems imply unfocused images. This contribution investigates a joint estimation of the trajectory and SAR image. Starting with a nominal trajectory, we successively improve the image by optimizing a focus measure and updating the trajectory accordingly. The method is illustrated using simulations using typical navigation performance of an unmanned aerial vehicle. One real data set is used to show feasibility, where the result indicates that, in particular, the azimuth position error is decreased as the image focus is iteratively improved.

[1]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[2]  Mengdao Xing,et al.  Minimum-Entropy-Based Autofocus Algorithm for SAR Data Using Chebyshev Approximation and Method of Series Reversion, and Its Implementation in a Data Processor , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[5]  Lars M. H. Ulander,et al.  Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[6]  John Kirk,et al.  Motion Compensation for Synthetic Aperture Radar , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Lars M. H. Ulander,et al.  Development of VHF CARABAS II SAR , 1996, Defense, Security, and Sensing.

[8]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[9]  Mengdao Xing,et al.  Motion Compensation for UAV SAR Based on Raw Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  E. Leith,et al.  A High-Resolution Radar Combat-Surveillance System , 1961, IRE Transactions on Military Electronics.

[11]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[12]  H Hellsten,et al.  An inverse method for the processing of synthetic aperture radar data , 1986 .

[13]  A. Milman SAR imaging by ?? migration , 1993 .

[14]  J. Fienup Detecting moving targets in SAR imagery by focusing , 2001 .

[15]  Feng Li,et al.  SAR autofocus based on minimum entropy , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Mats I. Pettersson,et al.  Detection of Moving Targets by Focusing in UWB SAR—Theory and Experimental Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Lars M. H. Ulander,et al.  Synthetic-aperture radar processing using fast factorized back-projection , 2003 .

[18]  James R. Fienup,et al.  Phase Error Correction by Shear Averaging , 1989, Signal Recovery and Synthesis III.

[19]  S.A.S. Werness,et al.  Moving target imaging algorithm for SAR data , 1990 .

[20]  S. Buckreuss Motion compensation for airborne SAR based on inertial data, RDM and GPS , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Krzysztof S. Kulpa,et al.  Coherent MapDrift Technique , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Charles V. Jakowatz,et al.  New approach to strip-map SAR autofocus , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[23]  David G. Long,et al.  Extending the phase gradient autofocus algorithm for low-altitude stripmap mode SAR , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[24]  J. Farrell,et al.  The global positioning system and inertial navigation , 1999 .

[25]  F. Li,et al.  SAR Image Autofocus Utilizing Minimum-Entropy Criterion , 2013, IEEE Geoscience and Remote Sensing Letters.

[26]  Ian G. Cumming,et al.  Digital processing of Seasat SAR data , 1979, ICASSP.

[27]  Christophe Magnard,et al.  Moving-Target Tracking in Single-Channel Wide-Beam SAR , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[28]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[29]  L. Andersson On the determination of a function from spherical averages , 1988 .

[30]  Charles V. Jakowatz,et al.  Phase gradient autofocus-a robust tool for high resolution SAR phase correction , 1994 .

[31]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[32]  F. Rocca,et al.  SYNTHETIC APERTURE RADAR:A NEW APPLICATION FOR WAVE EQUATION TECHNIQUES1 , 1989 .

[33]  G. Donohoe,et al.  Subaperture autofocus for synthetic aperture radar , 1994 .

[34]  Alberto Moreira,et al.  An Autofocus Approach for Residual Motion Errors With Application to Airborne Repeat-Pass SAR Interferometry , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[35]  R. Bamler,et al.  A Novel High Precision SAR Focussing Algorithm Based On Chirp Scaling , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[36]  David C. Munson,et al.  An experimental study of a new entropy-based SAR autofocus technique , 2002, Proceedings. International Conference on Image Processing.

[37]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[38]  Oleksandr O. Bezvesilniy,et al.  Efficient estimation of residual trajectory deviations from SAR data , 2013, 2013 European Radar Conference.

[39]  M. J. Prickett,et al.  Principles of inverse synthetic aperture radar /ISAR/ imaging , 1980 .

[40]  Chung-ching Chen,et al.  Target-Motion-Induced Radar Imaging , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Li Xi,et al.  Autofocusing of ISAR images based on entropy minimization , 1999 .