Application of fractal algorithms of coastline echo’s generation on marine radar simulator

BackgroundMarine radar simulator is a useful approach endorsed by International Maritime Organization (IMO) to train the seafarers on how to operate marine radar equipment and use marine radar equipment for positioning and collision avoidance in laboratory. To fulfill all of the marine radar simulator training requirements, a high performance simulator is necessary. However, imperfections with currently available marine radar simulators require simulator developers to make improvements.Case descriptionIn this study, improved fractal algorithms (random Koch curve, fractional Brownian motion, and Weierstrass-Mandelbrot function) are applied to generate natural-looking radar echoes on a marine radar simulator.Discussion and evaluationFrom the results of the simulations, we can observe that the structures of the coastline echoes generated by improved fractal algorithms, especially by fractional Brownian motion algorithm, outperform the echoes generated by conventional method in representing a natural coastline feature.ConclusionsBased on evaluations from a panel of experienced mariners, we conclude that the coastline echoes simulated by fractal algorithms better represent a natural coastline feature than those generated by conventional methods.

[1]  J. Romeu,et al.  The Koch monopole: a small fractal antenna , 2000 .

[2]  M. Berry,et al.  On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  S. Harrouni,et al.  Fractal Classification of Typical Meteorological Days from Global Solar Irradiance: Application to Five Sites of Different Climates , 2008 .

[4]  A. Khenchaf,et al.  A versatile bistatic & polarimetric marine radar simulator , 2006, 2006 IEEE Conference on Radar.

[5]  Koji Murai,et al.  Evaluation of marine simulator training based on heart rate variability , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[6]  S S Cross,et al.  The application of fractal geometric analysis to microscopic images. , 1994, Micron.

[7]  K. Weierstrass,et al.  Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .

[8]  Xu Shanhua,et al.  Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel , 2015, PloS one.

[9]  Jin Yicheng,et al.  Design radar signal interface for navigation Radar/ARPA simulator using radar display , 2010, 2010 Second Pacific-Asia Conference on Circuits, Communications and System.

[10]  Michel Keddam,et al.  Impedance of fractal interfaces : new data on the Von Koch model. , 1988 .

[11]  Asghar Ali,et al.  SIMULATOR INSTRUCTOR - STCW REQUIREMENTS AND REALITY , 2006 .

[12]  B. Sapoval,et al.  Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.

[13]  Christopher H. Scholz,et al.  Fractal Analysis Applied to Characteristic Segments , 1987 .

[14]  Li Zhi-hua Key Technologies of Navigation Radar Simulator Using Real Radar Monitor , 2007 .

[15]  V. Pipiras Wavelet-based simulation of fractional Brownian motion revisited , 2005 .

[16]  A. N. Cockcroft,et al.  International convention on standards of training, certification and watchkeeping for seafarers, 1978, as amended , 2012 .

[17]  Rainer Schöbel,et al.  A note on the use of fractional Brownian motion for financial modeling , 2013 .

[18]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[19]  Kenneth Falconer Fractals: A Very Short Introduction , 2013 .

[20]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[22]  Richard F. Voss,et al.  Fractals in nature: from characterization to simulation , 1988 .

[23]  Xuesong Mei,et al.  Simulation and experimental study on the thermally induced deformations of high-speed spindle system , 2015 .

[24]  Jian Wang,et al.  Fractal Simulation on Random Rough Surface , 2015 .

[25]  Christopher H. Scholz,et al.  Fractal analysis applied to characteristic segments of the San Andreas Fault , 1987 .

[26]  Zhang Zhang,et al.  Characteristics, Applications and the Prospects of DSP , 2005, PDPTA.

[27]  Dan Liu,et al.  Simulation of Coastline’s Echo on Marine Radar Simulator Based on Fractal Theory , 2015 .

[28]  Quan Dongqun Echo image generation method for marine radar based on OpenGL modeling and simulation technology , 2010 .

[29]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[30]  Valerio Pascucci,et al.  Advances in Visual Computing : Second International Symposium, ISVC 2006, Part I , 2006 .

[31]  Kun Qin,et al.  Simulation of Coastlines Based on Cloud Fractal , 2008 .

[32]  Chenglong Yu,et al.  GENERALIZED WEIERSTRASS–MANDELBROT FUNCTION MODEL FOR ACTUAL STOCKS MARKETS INDEXES WITH NONLINEAR CHARACTERISTICS , 2015 .

[33]  R. C. Speck,et al.  APPLICABILITY OF FRACTAL CHARACTERIZATION AND MODELLING TO ROCK JOINT PROFILES , 1992 .

[34]  Zhang Zhang,et al.  A Review on Fractal Image Compression Coding and Some Improvement Measures , 2005, PDPTA.

[35]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[36]  A. Majumdar,et al.  Fractal characterization and simulation of rough surfaces , 1990 .