Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems

We study the influence of cross-Kerr (CK) coupling and optical parametric amplifier (OPA) on the effective frequency, damping, normal mode splitting, ground state cooling, and steady state entanglement of an optomechanical system formed by one fixed mirror and one movable mirror. The CK coupling could increase the damping of the movable mirror. The normal mode splitting of the output field is observed due to the CK coupling. The combination of the CK coupling and OPA decreases the minimum attainable phonon number and the effective temperature of the movable mirror. The amount of stationary entanglement between the mechanical and cavity modes can be enhanced by the weak CK coupling. In particular, we find the stationary entanglement becomes more robust against thermal fluctuations of the movable mirror in the presence of the weak CK coupling.

[1]  Vlatko Vedral,et al.  High-temperature macroscopic entanglement , 2004, quant-ph/0405102.

[2]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[3]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[4]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[5]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[6]  J Eisert,et al.  Gently modulating optomechanical systems. , 2009, Physical review letters.

[7]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[8]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[9]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[10]  F. Nori,et al.  Squeezed optomechanics with phase-matched amplification and dissipation. , 2014, Physical review letters.

[11]  Jian-Song Zhang,et al.  Thermal effects on bipartite and multipartite correlations in fiber coupled cavity arrays , 2014, 1405.3337.

[12]  M. H. Naderi,et al.  Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors , 2013, 1306.5543.

[13]  P. Hakonen,et al.  Cavity optomechanics mediated by a quantum two-level system , 2014, Nature Communications.

[14]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[15]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[16]  Ying-Dan Wang,et al.  Reservoir-engineered entanglement in optomechanical systems. , 2013, Physical review letters.

[17]  Sumei Huang,et al.  Enhancement of cavity cooling of a micromechanical mirror using parametric interactions , 2008, 0810.2589.

[18]  A. Sarma,et al.  Enhancing quantum correlations in an optomechanical system via cross-Kerr nonlinearity , 2016, 1610.06652.

[19]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[20]  R. Sarala,et al.  Cross-Kerr nonlinearity: a stability analysis , 2015, 1509.00964.

[21]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  Ying Wu,et al.  Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing , 2004 .

[23]  Aires Ferreira,et al.  Macroscopic thermal entanglement due to radiation pressure. , 2006, Physical review letters.

[24]  F. Illuminati,et al.  Extremal entanglement and mixedness in continuous variable systems , 2004, quant-ph/0402124.

[25]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[26]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[27]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[28]  Kaufman,et al.  Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. , 1987, Physical review. A, General physics.

[29]  J. You,et al.  Cross-Kerr effect on an optomechanical system , 2015, 1511.04518.

[30]  Stefano Mancini,et al.  Scheme for teleportation of quantum states onto a mechanical resonator. , 2003, Physical review letters.

[31]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[32]  M. Sillanpaa,et al.  Enhancing Optomechanical Coupling via the Josephson Effect , 2013, 1311.3802.

[33]  S. Deleglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2012, CLEO 2012.

[34]  Ai-Xi Chen,et al.  Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems , 2015, 1511.05751.

[35]  T. Heikkila,et al.  Cross-Kerr nonlinearity in optomechanical systems , 2015, 1501.02092.

[36]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[37]  M. H. Naderi,et al.  Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity , 2013, 1310.6251.

[38]  Lian-Fu Wei,et al.  Enhanced entanglement between two movable mirrors in an optomechanical system with nonlinear media , 2015 .

[39]  Yong Li,et al.  Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering , 2015, 1507.01718.

[40]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.