Diffie-Hellman Key Exchange Protocol, Its Generalization and Nilpotent Groups

This dissertation has two chapters. In the first chapter we talk about the discrete logarithm problem, more specifically we concentrate on the Diffie-Hellman key exchange protocol. We survey the current state of security for the Diffie-Hellman key exchange protocol. We also motivate the reader to think about the Diffie-Hellman key exchange in terms of group automorphisms. In the second chapter we study two key exchange protocols similar to the Diffie-Hellman key exchange protocol using an abelian subgroup of the automorphism group of a non-abelian group. We also generalize group no. 92 of the Hall-Senior table, for arbitrary prime p and study the automorphism group of these generalized group. We show that for those groups, the group of central automorphisms is an abelian group. We use these central automorphisms for the key exchange we are studying. We also develop a signature scheme.

[1]  Jeffrey C. Lagarias,et al.  Cryptology and Computational Number Theory , 1997 .

[2]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[3]  D. Jonah,et al.  Some non-abelianp-groups with abelian automorphism groups , 1975 .

[4]  Ali-Reza Jamali Some new non-abelian 2-groups with abelian automorphism groups , 2001 .

[5]  Ueli Maurer,et al.  Secret-key agreement over unauthenticated public channels I: Definitions and a completeness result , 2003, IEEE Trans. Inf. Theory.

[6]  Oliver Schirokauer,et al.  Discrete Logarithms: The Effectiveness of the Index Calculus Method , 1996, ANTS.

[7]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[8]  Alfred Menezes,et al.  The Discrete Logarithm Problem in GL(n, q) , 1997, Ars Comb..

[9]  Steven D. Galbraith,et al.  Easy decision-Diffie-Hellman groups , 2004, IACR Cryptol. ePrint Arch..

[10]  박해룡 Public-key cryptosystem using braid groups , 2001 .

[11]  Edlyn Teske Computing discrete logarithms with the parallelized kangaroo method, , 2003, Discret. Appl. Math..

[12]  Leonard M. Adleman,et al.  A subexponential algorithm for the discrete logarithm problem with applications to cryptography , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Neal Koblitz,et al.  A course in number theory and cryptography, Second Edition , 1994 .

[14]  Ronald C. Mullin,et al.  Dickson Bases and Finite Fields , 2005 .

[15]  Ueli Maurer,et al.  Secret-key agreement over unauthenticated public channels II: the simulatability condition , 2003, IEEE Trans. Inf. Theory.

[16]  Richard J. Lipton,et al.  Searching for Elements in Black Box Fields and Applications , 1996, CRYPTO 1996.

[17]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[18]  Victor Shoup,et al.  Lower Bounds for Discrete Logarithms and Related Problems , 1997, EUROCRYPT.

[19]  D. Goldfeld,et al.  An algebraic method for public-key cryptography , 1999 .

[20]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[21]  H. Heineken,et al.  The occurrence of finite groups in the automorphism group of nilpotent groups of class 2 , 1974 .

[22]  Igor E. Shparlinski,et al.  On the Security of Diffie-Hellman Bits , 2000, Electron. Colloquium Comput. Complex..

[23]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[24]  M. S. Voloshina,et al.  On the Holomorph of a Discrete Group , 2003 .

[25]  Irving Kaplansky,et al.  Infinite Abelian groups , 1954 .

[26]  S. Vanstone,et al.  Computing Logarithms in Finite Fields of Characteristic Two , 1984 .

[27]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[28]  Ian F. Blake,et al.  Computing Logarithms in GF(2n) , 1985, CRYPTO.

[29]  Kevin S. McCurley,et al.  A key distribution system equivalent to factoring , 1988, Journal of Cryptology.

[30]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[31]  Jang-Won Lee,et al.  New Signature Scheme Using Conjugacy Problem , 2002, IACR Cryptol. ePrint Arch..

[32]  Neal Koblitz,et al.  Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.

[33]  M. J. Curran,et al.  Semidirect product groups with Abelian automorphism groups , 1987 .

[34]  Ruth Rebekka Struik Some non-abelian 2-groups with abelian automorphism groups , 1982 .

[35]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[36]  Ian F. Blake,et al.  On the complexity of the discrete logarithm and Diffie-Hellman problems , 2004, J. Complex..

[37]  Charles C. Sims,et al.  Computation with finitely presented groups , 1994, Encyclopedia of mathematics and its applications.

[38]  I. Motivation,et al.  Secret-Key Agreement Over Unauthenticated Public Channels—Part III: Privacy Amplification , 2003 .

[39]  Dan Boneh,et al.  Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes , 1996, CRYPTO.

[40]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[41]  Andrew M. Odlyzko,et al.  Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..

[42]  Ottmar Miiller,et al.  On p -automorphisms of finite p -groups , 1979 .

[43]  Iris Anshel,et al.  New Key Agreement Protocols in Braid Group Cryptography , 2001, CT-RSA.

[44]  Andrew M. Odlyzko,et al.  Computation of discrete logarithms in prime fields , 1991, Des. Codes Cryptogr..

[45]  Daniel Panario,et al.  The index calculus method using non-smooth polynomials , 2001, Math. Comput..

[46]  J. E. Adney,et al.  Automorphisms of $p$-group , 1965 .

[47]  C. Hopkins Non-Abelian Groups Whose Groups of Isomorphisms are Abelian , 1927 .

[48]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[49]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[50]  Marta Morigi On $p$-groups with abelian automorphism group , 1994 .

[51]  Marshall Hall,et al.  The Groups of Order 2 n (n ≦6) , 1965 .

[52]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .