Challenges and opportunities in cryo-EM single-particle analysis

Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.

[1]  Justin M Kollman,et al.  Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids , 2016, bioRxiv.

[2]  Peter B Rosenthal,et al.  Validating maps from single particle electron cryomicroscopy. , 2015, Current opinion in structural biology.

[3]  David Eisenberg,et al.  Atomic resolution structures from fragmented protein crystals by the cryoEM method MicroED , 2017, Nature Methods.

[4]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[5]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[6]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[7]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[8]  Sriram Subramaniam,et al.  Structure of trimeric HIV-1 envelope glycoproteins , 2013, Proceedings of the National Academy of Sciences.

[9]  H. Padmore,et al.  Design of an electron microscope phase plate using a focused continuous-wave laser , 2010, New journal of physics.

[10]  A T Brünger,et al.  Free R value: cross-validation in crystallography. , 1997, Methods in enzymology.

[11]  W. O. Saxton Observation of lens aberrations for very high‐resolution electron microscopy. I. Theory , 1995 .

[12]  Dmitry Lyumkis,et al.  Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focused classification. , 2019, Ultramicroscopy.

[13]  K. Murata,et al.  Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. , 2018, Biochimica et biophysica acta. General subjects.

[14]  J. Trinick,et al.  A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. , 2003, Journal of structural biology.

[15]  E. Nogales The development of cryo-EM into a mainstream structural biology technique , 2015, Nature Methods.

[16]  Dmitry Lyumkis,et al.  Likelihood-based classification of cryo-EM images using FREALIGN. , 2013, Journal of structural biology.

[17]  Christopher J. Williams,et al.  Model validation: local diagnosis, correction and when to quit , 2018, Acta crystallographica. Section D, Structural biology.

[18]  David A Agard,et al.  A simple and robust procedure for preparing graphene-oxide cryo-EM grids , 2018, bioRxiv.

[19]  Andrej Bieri,et al.  Miniaturized Sample Preparation for Transmission Electron Microscopy , 2018, Journal of visualized experiments : JoVE.

[20]  Frank DiMaio,et al.  RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps , 2017, Nature Methods.

[21]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[22]  Avinash Patel,et al.  Structure of human TFIID and mechanism of TBP loading onto promoter DNA. , 2018 .

[23]  N. Grigorieff,et al.  Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome , 2016, eLife.

[24]  Martin Grininger,et al.  The deadly touch: protein denaturation at the water-air interface and how to prevent it , 2018, bioRxiv.

[25]  R. Ghirlando,et al.  Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome , 2017, Science.

[26]  C O S Sorzano,et al.  Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. , 2016, Journal of structural biology.

[27]  J. Dubochet,et al.  Electron microscopy of frozen water and aqueous solutions , 1982 .

[28]  Ahmed H. Zewail,et al.  4D cryo-electron microscopy of proteins. , 2013, Journal of the American Chemical Society.

[29]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[30]  Thomas C Terwilliger,et al.  Automated map sharpening by maximization of detail and connectivity , 2018, bioRxiv.

[31]  Tamir Gonen,et al.  Analysis of global and site-specific radiation damage in cryo-EM , 2018, bioRxiv.

[32]  Michael Levitt,et al.  Architecture of an RNA Polymerase II Transcription Pre-Initiation Complex , 2013, Science.

[33]  Zhenfeng Liu,et al.  Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution , 2016, Nature.

[34]  Alexis Rohou,et al.  cisTEM: User-friendly software for single-particle image processing , 2017, bioRxiv.

[35]  Dmitry Lyumkis,et al.  Analysis of Local Variability and Allostery in Macromolecular Assemblies using Cryo-EM and Focused Classification , 2018, bioRxiv.

[36]  S. Scheres,et al.  Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles , 2013, eLife.

[37]  Christopher Irving,et al.  Automation in single-particle electron microscopy connecting the pieces. , 2010, Methods in enzymology.

[38]  P. Penczek Resolution measures in molecular electron microscopy. , 2010, Methods in enzymology.

[39]  David Balchin,et al.  Pathway of Actin Folding Directed by the Eukaryotic Chaperonin TRiC , 2018, Cell.

[40]  F. Förster,et al.  Subtomogram analysis using the Volta phase plate. , 2017, Journal of structural biology.

[41]  Yifan Cheng,et al.  Single-particle cryo-EM data acquisition by using direct electron detection camera. , 2016, Microscopy.

[42]  Joachim Frank,et al.  Single-Particle Reconstruction of Biological Molecules-Story in a Sample (Nobel Lecture). , 2018, Angewandte Chemie.

[43]  Richard Henderson,et al.  The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules , 2019, Ultramicroscopy.

[44]  B. Carragher,et al.  Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. , 2018, Cell chemical biology.

[45]  Alwyn Eades,et al.  Obtaining TEM images with a uniform deviation parameter. , 2006, Ultramicroscopy.

[46]  Sjors H. W. Scheres,et al.  Unravelling biological macromolecules with cryo-electron microscopy , 2016, Nature.

[47]  J Frank,et al.  Three-dimensional reconstruction of the ribosome from Escherichia coli. , 1989, Biophysical journal.

[48]  A. Steven,et al.  One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. , 2013, Journal of structural biology.

[49]  W. Baumeister,et al.  Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate , 2016, Nature Communications.

[50]  N. Unwin,et al.  Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. , 1994, Ultramicroscopy.

[51]  Gabriel C Lander,et al.  Site-specific labeling of proteins for electron microscopy. , 2015, Journal of structural biology.

[52]  R. Glaeser,et al.  Electron Diffraction of Frozen, Hydrated Protein Crystals , 1974, Science.

[53]  Wolfgang Baumeister,et al.  Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. , 2010, Journal of structural biology.

[54]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2018, Nature Methods.

[55]  Alan Brown,et al.  The structure of the human mitochondrial ribosome , 2015, Science.

[56]  Xueming Li,et al.  Fabs enable single particle cryoEM studies of small proteins. , 2012, Structure.

[57]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[58]  Terrence Frey,et al.  Faculty Opinions recommendation of TRPV1 structures in distinct conformations reveal activation mechanisms. , 2014 .

[59]  Todd O. Yeates,et al.  Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system , 2017, Proceedings of the National Academy of Sciences.

[60]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[61]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[62]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[63]  José María Carazo,et al.  Automatic local resolution-based sharpening of cryo-EM maps , 2018, bioRxiv.

[64]  S H W Scheres,et al.  Processing of Structurally Heterogeneous Cryo-EM Data in RELION. , 2016, Methods in enzymology.

[65]  M Walker,et al.  Millisecond time resolution electron cryo-microscopy of the M-ATP transient kinetic state of the acto-myosin ATPase. , 1995, Biophysical journal.

[66]  Holger Stark,et al.  GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. , 2010, Methods in enzymology.

[67]  Arthur Christopoulos,et al.  Structural insights into G-protein-coupled receptor allostery , 2018, Nature.

[68]  H. Stark,et al.  Structure and Conformational Dynamics of the Human Spliceosomal Bact Complex , 2018, Cell.

[69]  Gabriel C. Lander,et al.  High-resolution structure determination of sub-100 kilodalton complexes using conventional cryo-EM , 2018, bioRxiv.

[70]  E. Callaway The revolution will not be crystallized: a new method sweeps through structural biology , 2015, Nature.

[71]  V. Ramakrishnan,et al.  Molecular Architecture of a Eukaryotic Translational Initiation Complex , 2013, Science.

[72]  Edward M. Marcotte,et al.  Classification of Single Particles from Human Cell Extract Reveals Distinct Structures , 2018, bioRxiv.

[73]  Andreas Hierlemann,et al.  Single-cell lysis for visual analysis by electron microscopy. , 2013, Journal of structural biology.

[74]  S. Burgess,et al.  Dynein structure and power stroke , 2003, Nature.

[75]  G. Jensen,et al.  Defocus-gradient corrected back-projection. , 2000, Ultramicroscopy.

[76]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[77]  H. Stahlberg,et al.  Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography , 2011, Proceedings of the National Academy of Sciences.

[78]  Jianlin Lei,et al.  Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution , 2019, Nature communications.

[79]  P. Penczek,et al.  A Primer to Single-Particle Cryo-Electron Microscopy , 2015, Cell.

[80]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[81]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[82]  R. Glaeser,et al.  Opinion: hazards faced by macromolecules when confined to thin aqueous films , 2016, Biophysics reports.

[83]  Qiyu Jin,et al.  Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. , 2014, Structure.

[84]  B P Schoenborn,et al.  Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Toh-Ming Lu,et al.  Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. , 2009, Journal of structural biology.

[86]  Anchi Cheng,et al.  Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles , 2015, Microscopy and Microanalysis.

[87]  Johannes Thomsen,et al.  Conformational Activation Promotes CRISPR-Cas12a Catalysis and Resetting of the Endonuclease Activity , 2018, Cell.

[88]  Koji Yonekura,et al.  Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges , 2015, Proceedings of the National Academy of Sciences.

[89]  Gabriel C Lander,et al.  Achieving better than 3 Å resolution by single particle cryo-EM at 200 keV , 2017, Nature Methods.

[90]  Yuan He,et al.  Near-atomic resolution visualization of human transcription promoter opening , 2017 .

[91]  Guillermo Sapiro,et al.  Atomic Resolution Cryo-EM Structure of β-Galactosidase. , 2018, Structure.

[92]  J. Mahamid,et al.  Unravelling molecular complexity in structural cell biology. , 2018, Current opinion in structural biology.

[93]  José María Carazo,et al.  MonoRes: Automatic and Accurate Estimation of Local Resolution for Electron Microscopy Maps. , 2018, Structure.

[94]  David Baker,et al.  Cryo‐EM model validation using independent map reconstructions , 2013, Protein science : a publication of the Protein Society.

[95]  Pierre Stadelmann,et al.  Effect of three-fold astigmatism on high resolution electron micrographs , 1995 .

[96]  Anchi Cheng,et al.  Automated data collection in single particle electron microscopy. , 2016, Microscopy.

[97]  Frank DiMaio,et al.  Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta , 2016, bioRxiv.

[98]  Chuangye Yan,et al.  Structural basis of pre-mRNA splicing , 2015, Science.

[99]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[100]  Yong Zi Tan,et al.  Reducing effects of particle adsorption to the air-water interface in cryoEM , 2018, Nature Methods.

[101]  L E Scriven,et al.  Controlled environment vitrification system: an improved sample preparation technique. , 1988, Journal of electron microscopy technique.

[102]  C. Russo,et al.  Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy , 2017, Nature Communications.

[103]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[104]  A. Cheng,et al.  Beam-induced motion of vitrified specimen on holey carbon film. , 2012, Journal of structural biology.

[105]  K. Nagayama,et al.  Transmission electron microscopy with Zernike phase plate. , 2001, Ultramicroscopy.

[106]  A. Kidera,et al.  The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. , 1999, Journal of molecular biology.

[107]  William J. Rice,et al.  High Resolution Single Particle Cryo-Electron Microscopy using Beam-Image Shift , 2018, bioRxiv.

[108]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[109]  J. Dubochet,et al.  VITRIFICATION OF PURE WATER FOR ELECTRON MICROSCOPY , 1981 .

[110]  J Pulokas,et al.  Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. , 1999, Ultramicroscopy.

[111]  Z. Zhou,et al.  3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy , 2008, Nature.

[112]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[113]  W. O. Saxton,et al.  The correlation averaging of a regularly arranged bacterial cell envelope protein , 1982, Journal of microscopy.

[114]  Claudio Ciferri,et al.  Cryo-EM in drug discovery: achievements, limitations and prospects , 2018, Nature Reviews Drug Discovery.

[115]  Sjors H. W. Scheres,et al.  The architecture of the spliceosomal U4/U6.U5 tri-snRNP , 2015, Nature.

[116]  W. Baumeister,et al.  Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. , 2013, Current opinion in structural biology.

[117]  R. Egerton Choice of operating voltage for a transmission electron microscope. , 2014, Ultramicroscopy.

[118]  Markus Stabrin,et al.  High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE , 2017, Journal of visualized experiments : JoVE.

[119]  J Pulokas,et al.  Leginon: an automated system for acquisition of images from vitreous ice specimens. , 2000, Journal of structural biology.

[120]  Bo Liang,et al.  Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy , 2015, Cell.

[121]  Jimin Wang,et al.  On the interpretation of electron microscopic maps of biological macromolecules , 2017, Protein science : a publication of the Protein Society.

[122]  A. Cheng,et al.  Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. , 2012, Structure.

[123]  Israel S. Fernández,et al.  Molecular Architecture of a Eukaryotic Translational Initiation , 2014 .

[124]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[125]  Dmitry Lyumkis,et al.  Modular Assembly of the Bacterial Large Ribosomal Subunit , 2016, Cell.

[126]  Thomas Walz,et al.  Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy , 2004, Biological Procedures Online.

[127]  Richard Henderson,et al.  From Electron Crystallography to Single Particle CryoEM (Nobel Lecture). , 2018, Angewandte Chemie.

[128]  Jimin Wang,et al.  Experimental charge density from electron microscopic maps , 2017, Protein science : a publication of the Protein Society.

[129]  J. Harris,et al.  Negative staining and cryo-negative staining: applications in biology and medicine. , 2014, Methods in molecular biology.

[130]  Bridget Carragher,et al.  Software tools for molecular microscopy: an open-text Wikibook. , 2010, Methods in enzymology.

[131]  Garib N Murshudov,et al.  Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM , 2018, Acta crystallographica. Section D, Structural biology.

[132]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[133]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[134]  Zoya Ignatova,et al.  Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1 , 2018, Nature Microbiology.

[135]  S. Harrison,et al.  Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction , 2008, Proceedings of the National Academy of Sciences.

[136]  Peter B. Rosenthal,et al.  Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: Reduction of electron-optical effects of charging☆ , 2013, Journal of structural biology.

[137]  Priyanka D Abeyrathne,et al.  The Affinity Grid: a pre-fabricated EM grid for monolayer purification. , 2008, Journal of molecular biology.

[138]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[139]  Kathleen F Mittendorf,et al.  While the revolution will not be crystallized, biochemistry reigns supreme , 2017, Protein science : a publication of the Protein Society.

[140]  Prashant Rao,et al.  Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports , 2014, Scientific Reports.

[141]  M. van Heel,et al.  Fourier shell correlation threshold criteria. , 2005, Journal of structural biology.

[142]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[143]  Yong Zi Tan,et al.  Routine single particle CryoEM sample and grid characterization by tomography , 2017, bioRxiv.

[144]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[145]  Joachim Frank,et al.  Time-resolved cryo-electron microscopy: Recent progress. , 2017, Journal of structural biology.

[146]  Utz Fischer,et al.  ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space , 2015, Nature Methods.

[147]  Tanmay A M Bharat,et al.  Design of a molecular support for cryo-EM structure determination , 2016, Proceedings of the National Academy of Sciences.

[148]  Zbigniew Dauter,et al.  High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective. , 2017, Structure.

[149]  Ruedi Aebersold,et al.  The complete structure of the 55S mammalian mitochondrial ribosome , 2015, Science.

[150]  Thomas Walz,et al.  A practical guide to the use of monolayer purification and affinity grids. , 2010, Methods in enzymology.

[151]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[152]  J. Hirst,et al.  Architecture of mammalian respiratory complex I , 2014, Nature.

[153]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[154]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[155]  E. Lindahl,et al.  Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION , 2018, bioRxiv.

[156]  J Brink,et al.  Evaluation of charging on macromolecules in electron cryomicroscopy. , 1998, Ultramicroscopy.

[157]  Daniel E. Goldberg,et al.  Malaria Parasite Translocon Structure and Mechanism of Effector Export , 2018, Nature.

[158]  Daniel L. Minor,et al.  Cryo-EM structures of the TMEM16A calcium-activated chloride channel , 2017, Nature.

[159]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[160]  Tamir Gonen,et al.  Analysis of global and site-specific radiation damage in cryo-EM , 2018, bioRxiv.

[161]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[162]  Thomas Walz,et al.  Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. , 2006, Journal of molecular biology.

[163]  Matthew L. Baker,et al.  Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy , 2008, Nature.

[164]  R. Glaeser,et al.  Near-concentric Fabry-Pérot cavity for continuous-wave laser control of electron waves. , 2017, Optics express.

[165]  Jimin Wang,et al.  On the appearance of carboxylates in electrostatic potential maps , 2017, Protein science : a publication of the Protein Society.

[166]  Pawel A Penczek,et al.  Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms. , 2002, Journal of structural biology.

[167]  Thomas Walz,et al.  Strategy for the use of affinity grids to prepare non-His-tagged macromolecular complexes for single-particle electron microscopy. , 2010, Journal of molecular biology.

[168]  Carsten Sachse,et al.  Thresholding of cryo-EM density maps by false discovery rate control , 2018, bioRxiv.

[169]  R. Glaeser PROTEINS, INTERFACES, AND CRYO-EM GRIDS. , 2017, Current opinion in colloid & interface science.

[170]  Deborah F. Kelly,et al.  Capturing Enveloped Viruses on Affinity Grids for Downstream Cryo-Electron Microscopy Applications , 2013, Microscopy and Microanalysis.

[171]  J. C. Meyer,et al.  The application of graphene as a sample support in transmission electron microscopy , 2012 .

[172]  Robert M Glaeser,et al.  Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. , 2011, Journal of structural biology.

[173]  A. Koster,et al.  Conical Fourier shell correlation applied to electron tomograms. , 2015, Journal of structural biology.

[174]  Rebecca F Thompson,et al.  Approaches to altering particle distributions in cryo-electron microscopy sample preparation , 2018, Acta crystallographica. Section D, Structural biology.

[175]  Richard Henderson,et al.  Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy , 2011, Journal of molecular biology.

[176]  N. Grigorieff,et al.  Quantitative characterization of electron detectors for transmission electron microscopy. , 2013, Journal of structural biology.

[177]  John P. Moore,et al.  Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer , 2013, Science.

[178]  Wolfgang Baumeister,et al.  Expanding the boundaries of cryo-EM with phase plates. , 2017, Current opinion in structural biology.

[179]  R. Glaeser Specimen Behavior in the Electron Beam. , 2016, Methods in enzymology.

[180]  Wen Jiang,et al.  Selective Capture of Histidine-tagged Proteins from Cell Lysates Using TEM grids Modified with NTA-Graphene Oxide , 2016, Scientific Reports.

[181]  Yanyu Zhao,et al.  Three-dimensional structure of human γ-secretase , 2014, Nature.

[182]  D. DeRosier Correction of high-resolution data for curvature of the Ewald sphere. , 2000, Ultramicroscopy.

[183]  Marin van Heel,et al.  Finding trimeric HIV-1 envelope glycoproteins in random noise , 2013 .

[184]  A. Bartesaghi,et al.  2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor , 2015, Science.

[185]  Deborah F. Kelly,et al.  Preparation of Tunable Microchips to Visualize Native Protein Complexes for Single-Particle Electron Microscopy. , 2018, Methods in molecular biology.

[186]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[187]  Christopher J. Williams,et al.  MolProbity: More and better reference data for improved all‐atom structure validation , 2018, Protein science : a publication of the Protein Society.

[188]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[189]  Henning Stahlberg,et al.  Focus: The interface between data collection and data processing in cryo-EM. , 2017, Journal of structural biology.

[190]  Yong Zi Tan,et al.  Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant , 2018, Nature Communications.

[191]  Mikako Shirouzu,et al.  Structural basis of the nucleosome transition during RNA polymerase II passage , 2018, Science.

[192]  Yigong Shi,et al.  Structure of a yeast spliceosome at 3.6-angstrom resolution , 2015, Science.

[193]  Thomas C Terwilliger,et al.  New tools for the analysis and validation of cryo-EM maps and atomic models , 2018, bioRxiv.

[194]  Hstau Y Liao,et al.  Trajectories of the ribosome as a Brownian nanomachine , 2014, Proceedings of the National Academy of Sciences.

[195]  Joachim Frank,et al.  Advances in the field of single-particle cryo-electron microscopy over the last decade , 2017, Nature Protocols.

[196]  Joachim Frank,et al.  A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. , 2017, Structure.

[197]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[198]  Carsten Sachse,et al.  Model-based local density sharpening of cryo-EM maps , 2017, eLife.

[199]  Bijoya Paul,et al.  Cryo-EM reconstruction of the chlororibosome to 3.2 Å resolution within 24 h , 2017, IUCrJ.

[200]  C. Russo,et al.  Progress towards an optimal specimen support for electron cryomicroscopy , 2016, Current opinion in structural biology.

[201]  J. Dubochet,et al.  A Reminiscence about Early Times of Vitreous Water in Electron Cryomicroscopy. , 2016, Biophysical journal.

[202]  Bridget Carragher,et al.  Structure of the Insulin Receptor-Insulin Complex by Single Particle CryoEM analysis , 2018, Nature.

[203]  Mindy I. Davis,et al.  Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery , 2016, Cell.

[204]  J. Dubochet,et al.  On the Development of Electron Cryo-Microscopy (Nobel Lecture). , 2018, Angewandte Chemie.

[205]  M. Baker,et al.  Outcome of the First Electron Microscopy Validation Task Force Meeting , 2012, Structure.

[206]  B. Carragher,et al.  Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. , 2012, Journal of structural biology.

[207]  Linquan Bai,et al.  Genome engineering for microbial natural product discovery. , 2018, Current opinion in microbiology.

[208]  Richard Henderson,et al.  Single particle electron cryomicroscopy: trends, issues and future perspective , 2016, Quarterly Reviews of Biophysics.

[209]  William J. Rice,et al.  A new method for vitrifying samples for cryo-EM , 2017 .

[210]  R. Turchetta,et al.  Enhanced imaging in low dose electron microscopy using electron counting , 2009, Ultramicroscopy.

[211]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..