Estimation of a Normal Mean Vector II
暂无分享,去创建一个
[1] W. Strawderman,et al. On predictive density estimation for location families under integrated absolute error loss , 2017 .
[2] Stokes’ theorem, Stein’s identity and completeness , 2016 .
[3] Éric Marchand,et al. On predictive density estimation for location families under integrated squared error loss , 2015, J. Multivar. Anal..
[4] Yuzo Maruyama,et al. Inadmissibility of the best equivariant predictive density in the unknown variance case , 2013, 1308.2765.
[5] Robert L. Strawderman,et al. Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation , 2013 .
[6] Alberto Bressan,et al. Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations , 2012 .
[7] Lawrence D. Brown,et al. A Geometrical Explanation of Stein Shrinkage , 2012 .
[8] S. Zinodiny,et al. Bayes minimax estimation of the multivariate normal mean vector for the case of common unknown variance , 2011, J. Multivar. Anal..
[9] On improved predictive density estimation with parametric constraints , 2011 .
[10] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[11] J. Griffin,et al. Inference with normal-gamma prior distributions in regression problems , 2010 .
[12] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[13] Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance , 2008 .
[14] Edward I. George,et al. Admissible predictive density estimation , 2008 .
[15] Miguel A. Gómez-Villegas,et al. Multivariate Exponential Power Distributions as Mixtures of Normal Distributions with Bayesian Applications , 2008 .
[16] M. Wells,et al. Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions , 2006 .
[17] Feng Liang,et al. Improved minimax predictive densities under Kullback-Leibler loss , 2006, math/0605432.
[18] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[19] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[20] On minimaxity and admissibility of hierarchical Bayes estimators , 2007 .
[21] I. Johnstone,et al. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.
[22] Yuzo Maruyama,et al. A new class of generalized Bayes minimax ridge regression estimators , 2004, math/0508282.
[23] Feng Liang,et al. Exact minimax strategies for predictive density estimation, data compression, and model selection , 2002, IEEE Transactions on Information Theory.
[24] Patrice Lepelletier. Sur les régions de confiance : amélioration, estimation d'un degré de confiance conditionnel , 2004 .
[25] Martin T. Wells,et al. Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix , 2003 .
[26] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[27] Fumiyasu Komaki,et al. A shrinkage predictive distribution for multivariate Normal observables , 2001 .
[28] F. Perron,et al. Improving on the MLE of a bounded normal mean , 2001 .
[29] D. Fourdrinier,et al. Estimation of the mean of a spherically symmetric distribution with constraints on the norm , 2000 .
[30] M. Wells,et al. On the construction of Bayes minimax estimators , 1998 .
[31] Yuzo Maruyama,et al. A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean , 1998 .
[32] J. Berger,et al. Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .
[33] C. Robert. The Bayesian choice : a decision-theoretic motivation , 1996 .
[34] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[35] Otared Kavian,et al. Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .
[36] K. Hoffmann. Improved estimation of distribution parameters : Stein-type estimators , 1992 .
[37] William E. Strawderman,et al. A James-Stein Type Estimator for Combining Unbiased and Possibly Biased Estimators , 1991 .
[38] William E. Strawderman,et al. Generalizations of James-Stein Estimators Under Spherical Symmetry , 1991 .
[39] A class of multiple shrinkage estimators , 1991 .
[40] Kam-Wah Tsui,et al. Multiple-shrinkage estimators of means in exponential families , 1990 .
[41] Daniel W. Stroock,et al. A concise introduction to the theory of integration , 1990 .
[42] W. Ziemer. Weakly differentiable functions , 1989 .
[43] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[44] On Inadmissibility of Some Unbiased Estimates of Loss , 1988 .
[45] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[46] E. George. A formal bayes multiple shrinkage estimator , 1986 .
[47] J. Doob. Classical potential theory and its probabilistic counterpart , 1984 .
[48] G. Casella,et al. Minimax Confidence Sets for the Mean of a Multivariate Normal Distribution , 1982 .
[49] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[50] G. Casella,et al. Estimating a Bounded Normal Mean , 1981 .
[51] Vee Ming Ng,et al. On the estimation of parametric density functions , 1980 .
[52] Stein's positive part estimator and bayes estimator , 1979 .
[53] R. Faith. Minimax Bayes estimators of a multivariate normal mean , 1978 .
[54] J. Berger,et al. Generalized Bayes Estimators in Multivariate Problems , 1978 .
[55] B. Efron,et al. Stein's Paradox in Statistics , 1977 .
[56] G. D. Murray,et al. NOTE ON ESTIMATION OF PROBABILITY DENSITY FUNCTIONS , 1977 .
[57] J. Berger. Inadmissibility Results for the Best Invariant Estimator of Two Coordinates of a Location Vector , 1976 .
[58] Bradley Efron,et al. Families of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1976 .
[59] J. Aitchison. Goodness of prediction fit , 1975 .
[60] William E. Strawderman,et al. Proper Bayes Minimax Estimators of the Multivariate Normal Mean Vector for the Case of Common Unknown Variances , 1973 .
[61] A Family of Admissible Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1973 .
[62] L. Brown. Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .
[63] W. Strawderman. Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .
[64] A. Baranchik,et al. A Family of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1970 .
[65] Generalized Bayes Solutions in Estimation Problems , 1963 .
[66] C. Stein. Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .
[67] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[68] D. V. Widder,et al. The Laplace Transform , 1943 .