Estimation of a Normal Mean Vector II

[1]  W. Strawderman,et al.  On predictive density estimation for location families under integrated absolute error loss , 2017 .

[2]  Stokes’ theorem, Stein’s identity and completeness , 2016 .

[3]  Éric Marchand,et al.  On predictive density estimation for location families under integrated squared error loss , 2015, J. Multivar. Anal..

[4]  Yuzo Maruyama,et al.  Inadmissibility of the best equivariant predictive density in the unknown variance case , 2013, 1308.2765.

[5]  Robert L. Strawderman,et al.  Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation , 2013 .

[6]  Alberto Bressan,et al.  Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations , 2012 .

[7]  Lawrence D. Brown,et al.  A Geometrical Explanation of Stein Shrinkage , 2012 .

[8]  S. Zinodiny,et al.  Bayes minimax estimation of the multivariate normal mean vector for the case of common unknown variance , 2011, J. Multivar. Anal..

[9]  On improved predictive density estimation with parametric constraints , 2011 .

[10]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[11]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[12]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[13]  Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance , 2008 .

[14]  Edward I. George,et al.  Admissible predictive density estimation , 2008 .

[15]  Miguel A. Gómez-Villegas,et al.  Multivariate Exponential Power Distributions as Mixtures of Normal Distributions with Bayesian Applications , 2008 .

[16]  M. Wells,et al.  Estimation of a Location Parameter with Restrictions or “vague information” for Spherically Symmetric Distributions , 2006 .

[17]  Feng Liang,et al.  Improved minimax predictive densities under Kullback-Leibler loss , 2006, math/0605432.

[18]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[19]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[20]  On minimaxity and admissibility of hierarchical Bayes estimators , 2007 .

[21]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[22]  Yuzo Maruyama,et al.  A new class of generalized Bayes minimax ridge regression estimators , 2004, math/0508282.

[23]  Feng Liang,et al.  Exact minimax strategies for predictive density estimation, data compression, and model selection , 2002, IEEE Transactions on Information Theory.

[24]  Patrice Lepelletier Sur les régions de confiance : amélioration, estimation d'un degré de confiance conditionnel , 2004 .

[25]  Martin T. Wells,et al.  Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix , 2003 .

[26]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[27]  Fumiyasu Komaki,et al.  A shrinkage predictive distribution for multivariate Normal observables , 2001 .

[28]  F. Perron,et al.  Improving on the MLE of a bounded normal mean , 2001 .

[29]  D. Fourdrinier,et al.  Estimation of the mean of a spherically symmetric distribution with constraints on the norm , 2000 .

[30]  M. Wells,et al.  On the construction of Bayes minimax estimators , 1998 .

[31]  Yuzo Maruyama,et al.  A Unified and Broadened Class of Admissible Minimax Estimators of a Multivariate Normal Mean , 1998 .

[32]  J. Berger,et al.  Choice of hierarchical priors: admissibility in estimation of normal means , 1996 .

[33]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  Otared Kavian,et al.  Introduction à la théorie des points critiques : et applications aux problèmes elliptiques , 1993 .

[36]  K. Hoffmann Improved estimation of distribution parameters : Stein-type estimators , 1992 .

[37]  William E. Strawderman,et al.  A James-Stein Type Estimator for Combining Unbiased and Possibly Biased Estimators , 1991 .

[38]  William E. Strawderman,et al.  Generalizations of James-Stein Estimators Under Spherical Symmetry , 1991 .

[39]  A class of multiple shrinkage estimators , 1991 .

[40]  Kam-Wah Tsui,et al.  Multiple-shrinkage estimators of means in exponential families , 1990 .

[41]  Daniel W. Stroock,et al.  A concise introduction to the theory of integration , 1990 .

[42]  W. Ziemer Weakly differentiable functions , 1989 .

[43]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[44]  On Inadmissibility of Some Unbiased Estimates of Loss , 1988 .

[45]  E. George Minimax Multiple Shrinkage Estimation , 1986 .

[46]  E. George A formal bayes multiple shrinkage estimator , 1986 .

[47]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[48]  G. Casella,et al.  Minimax Confidence Sets for the Mean of a Multivariate Normal Distribution , 1982 .

[49]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[50]  G. Casella,et al.  Estimating a Bounded Normal Mean , 1981 .

[51]  Vee Ming Ng,et al.  On the estimation of parametric density functions , 1980 .

[52]  Stein's positive part estimator and bayes estimator , 1979 .

[53]  R. Faith Minimax Bayes estimators of a multivariate normal mean , 1978 .

[54]  J. Berger,et al.  Generalized Bayes Estimators in Multivariate Problems , 1978 .

[55]  B. Efron,et al.  Stein's Paradox in Statistics , 1977 .

[56]  G. D. Murray,et al.  NOTE ON ESTIMATION OF PROBABILITY DENSITY FUNCTIONS , 1977 .

[57]  J. Berger Inadmissibility Results for the Best Invariant Estimator of Two Coordinates of a Location Vector , 1976 .

[58]  Bradley Efron,et al.  Families of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1976 .

[59]  J. Aitchison Goodness of prediction fit , 1975 .

[60]  William E. Strawderman,et al.  Proper Bayes Minimax Estimators of the Multivariate Normal Mean Vector for the Case of Common Unknown Variances , 1973 .

[61]  A Family of Admissible Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1973 .

[62]  L. Brown Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .

[63]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[64]  A. Baranchik,et al.  A Family of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1970 .

[65]  Generalized Bayes Solutions in Estimation Problems , 1963 .

[66]  C. Stein Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .

[67]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[68]  D. V. Widder,et al.  The Laplace Transform , 1943 .