A Revised View of the Linear Polarization in the Subparsec Core of M87 at 7 mm

The linear polarization images of the jet in the giant elliptical galaxy M87 have previously been observed with Very Long Baseline Array at 7 mm. They exhibit a complex polarization structure surrounding the optically thick and compact subparsec-scale core. However, given the low level of linear polarization in the core, it is required to verify that this complex structure does not originate from residual instrumental polarization signals in the data. We have performed a new analysis of the same data sets observed in four epochs by using the Generalized Polarization CALibration pipeline (GPCAL). This novel instrumental polarization calibration pipeline overcomes the limitations of LPCAL, a conventional calibration tool used in the previous M87 studies. The resulting images show a compact linear polarization structure with its peak nearly coincident with the total intensity peak, which is significantly different from the results of previous studies. The core linear polarization is characterized as fractional polarization of ∼0.2%–0.6% and polarization angles of ∼66°–92°, showing moderate variability. We demonstrate that, based on tests with synthetic data sets, LPCAL using calibrators having complex polarization structures cannot achieve sufficient calibration accuracy to obtain the true polarization image of M87 due to a breakdown of the “similarity approximation.” We find that GPCAL obtains more accurate D-terms than LPCAL by using observed closure traces of calibrators that are insensitive to both antenna gain and polarization leakage corruptions. This study suggests that polarization imaging of very weakly polarized sources has become possible with the advanced instrumental polarization calibration techniques.

[1]  F. G. Saturni,et al.  Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign , 2021, 2104.06855.

[2]  Daniel C. M. Palumbo,et al.  Polarimetric Properties of Event Horizon Telescope Targets from ALMA , 2021, The Astrophysical Journal Letters.

[3]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[4]  Dominic W. Pesce,et al.  A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data , 2021, 2102.03328.

[5]  M. Kino,et al.  Jet Collimation and Acceleration in the Giant Radio Galaxy NGC 315 , 2020, 2012.14154.

[6]  M. Janssen,et al.  Polarization calibration techniques for the new-generation VLBI , 2020, Astronomy & Astrophysics.

[7]  Jongho Park,et al.  GPCAL: A Generalized Calibration Pipeline for Instrumental Polarization in VLBI Data , 2020, 2011.09713.

[8]  A. Broderick,et al.  Closure Traces: Novel Calibration-insensitive Quantities for Radio Astronomy , 2020, The Astrophysical Journal.

[9]  Daniel C. M. Palumbo,et al.  THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope , 2020, The Astrophysical Journal.

[10]  A. Merloni,et al.  Low optical polarization at the core of the optically thin jet of M87 , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  K. Hada,et al.  Linear polarization in the nucleus of M87 at 7 mm and 1.3 cm , 2020, Astronomy & Astrophysics.

[12]  M. Takahashi,et al.  Properties of Trans-fast Magnetosonic Jets in Black Hole Magnetospheres , 2020, The Astrophysical Journal.

[13]  L. Blackburn,et al.  Closure Statistics in Interferometric Data , 2019, The Astrophysical Journal.

[14]  J. Algaba,et al.  Kinematics of the M87 Jet in the Collimation Zone: Gradual Acceleration and Velocity Stratification , 2019, The Astrophysical Journal.

[15]  J. Algaba,et al.  Ejection of Double Knots from the Radio Core of PKS 1510–089 during the Strong Gamma-Ray Flares in 2015 , 2019, The Astrophysical Journal.

[16]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[17]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019, The Astrophysical Journal.

[18]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[19]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[20]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[21]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[22]  Lindy Blackburn,et al.  rPICARD: A CASA-based calibration pipeline for VLBI data , 2019, Astronomy & Astrophysics.

[23]  M. Kino,et al.  Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet , 2018, The Astrophysical Journal.

[24]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[25]  E. Ros,et al.  Spatially resolved origin of millimeter-wave linear polarization in the nuclear region of 3C 84 , 2018, Astronomy & Astrophysics.

[26]  R. Narayan,et al.  Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87 , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[28]  M. Lister,et al.  MOJAVE XVI: Multiepoch Linear Polarization Properties of Parsec-scale AGN Jet Cores , 2018, The Astrophysical Journal.

[29]  K. Wajima,et al.  Collimation, Acceleration, and Recollimation Shock in the Jet of Gamma-Ray Emitting Radio-loud Narrow-line Seyfert 1 Galaxy 1H0323+342 , 2018, The Astrophysical Journal.

[30]  J. Algaba,et al.  Revealing the Nature of Blazar Radio Cores through Multifrequency Polarization Observations with the Korean VLBI Network , 2018, The Astrophysical Journal.

[31]  E. Ros,et al.  The limb-brightened jet of M87 down to the 7 Schwarzschild radii scale , 2018, Astronomy & Astrophysics.

[32]  Kazunori Akiyama,et al.  Interferometric Imaging Directly with Closure Phases and Closure Amplitudes , 2018, 1803.07088.

[33]  William Junor,et al.  The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz , 2018, 1802.06166.

[34]  Jean-Charles Cuillandre,et al.  The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) , 2018, 1802.05526.

[35]  A. Basu,et al.  Broadband radio spectro-polarimetric observations of high Faraday rotation measure AGN , 2018, 1801.09731.

[36]  L. Ho,et al.  Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case , 2017, 1712.04964.

[37]  M. Lister,et al.  MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017 , 2017, 1711.07802.

[38]  J. Hodgson,et al.  3 mm GMVA Observations of Total and Polarized Emission from Blazar and Radio Galaxy Core Regions , 2017, 1711.08461.

[39]  M. Kino,et al.  Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium , 2017, 1709.06708.

[40]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program , 2017, 1711.03983.

[41]  J. Algaba,et al.  Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales , 2017, 1706.02066.

[42]  C. Anderson,et al.  Broad-band, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN , 2017, 1705.00102.

[43]  K. Sokolovsky,et al.  Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets , 2017, 1701.00271.

[44]  A. Marscher Variability of Blazars and Blazar Models over 38 Years , 2016 .

[45]  M. Sikora,et al.  Gamma-Ray Observations of Active Galactic Nuclei , 2016 .

[46]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[47]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[48]  E. Ros,et al.  The stratified two-sided jet of Cygnus A. Acceleration and collimation , 2015, 1509.06250.

[49]  R. Narayan,et al.  Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes , 2013, 1307.1143.

[50]  D. Meier Black Hole Astrophysics: The Engine Paradigm , 2012 .

[51]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[52]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[53]  A. R. Taylor,et al.  Complex Faraday depth structure of active galactic nuclei as revealed by broad‐band radio polarimetry , 2012, 1201.3161.

[54]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VIII. FARADAY ROTATION IN PARSEC-SCALE AGN JETS , 2012 .

[55]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[56]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[57]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[58]  John P. Blakeslee,et al.  The inner halo of M 87: a first direct view of the red-giant population , 2010, 1009.3202.

[59]  A. R. Bazer-Bachi,et al.  Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy , 2009, Science.

[60]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[61]  S. O’Sullivan,et al.  Three-dimensional magnetic field structure of six parsec-scale active galactic nuclei jets , 2008, 0811.4426.

[62]  Paul S. Smith,et al.  The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst , 2008, Nature.

[63]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[64]  M. Lister,et al.  The Inner Jet of the Radio Galaxy [OBJECTNAME STATUS="LINKS"]M87[/OBJECTNAME] , 2007 .

[65]  S. Komissarov,et al.  Magnetic acceleration of relativistic active galactic nucleus jets , 2007 .

[66]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[67]  R. Walker,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007, astro-ph/0701511.

[68]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[69]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[70]  P. Edwards,et al.  The X-Ray Jet in Centaurus A: Clues to the Jet Structure and Particle Acceleration , 2005, astro-ph/0510661.

[71]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[72]  R. Narayan,et al.  Black Hole Accretion , 2005, Science.

[73]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[74]  R. Zavala,et al.  Faraday Rotation Measures in the Parsec-Scale Jets of the Radio Galaxies M87, 3C 111, and 3C 120 , 2002, astro-ph/0201458.

[75]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[76]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[77]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[78]  J. Zensus,et al.  Linear Polarization Imaging with Very Long Baseline Interferometry at High Frequencies , 1995 .

[79]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[80]  D. H. Roberts,et al.  Linear Polarization Radio Imaging at Milliarcsecond Resolution , 1994 .

[81]  Zhi-Yun Li,et al.  Asymptotic domination of cold relativistic MHD winds by kinetic energy flux , 1994 .

[82]  W. Cotton Calibration and imaging of polarization sensitive Very Long Baseline Interferometer observations , 1993 .

[83]  T. Chiueh,et al.  Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions , 1992 .

[84]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .

[85]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[86]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[87]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .