Compatibility, desirability, and the running intersection property

Abstract Compatibility is the problem of checking whether some given probabilistic assessments have a common joint probabilistic model. When the assessments are unconditional, the problem is well established in the literature and finds a solution through the running intersection property ( RIP ). This is not the case of conditional assessments. In this paper, we study the compatibility problem in a very general setting: any possibility space, unrestricted domains, imprecise (and possibly degenerate) probabilities. We extend the unconditional case to our setting, thus generalising most of previous results in the literature. The conditional case turns out to be fundamentally different from the unconditional one. For such a case, we prove that the problem can still be solved in general by RIP but in a more involved way: by constructing a junction tree and propagating information over it. Still, RIP does not allow us to optimally take advantage of sparsity: in fact, conditional compatibility can be simplified further by joining junction trees with coherence graphs.

[1]  Marco Zaffalon,et al.  Notes on desirability and conditional lower previsions , 2010, Annals of Mathematics and Artificial Intelligence.

[2]  Kun-Lin Kuo,et al.  Compatibility of discrete conditional distributions with structural zeros , 2010, J. Multivar. Anal..

[3]  Rolf Haenni,et al.  Ordered valuation algebras: a generic framework for approximating inference , 2004, Int. J. Approx. Reason..

[4]  A. R. Turquette,et al.  Logic, Semantics, Metamathematics , 1957 .

[6]  Jürg Kohlas Information algebras - generic structures for inference , 2003, Discrete mathematics and theoretical computer science.

[7]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[8]  L. C. Gaag Computing probability intervals under independency constraints , 1990, UAI.

[9]  B. D. Finetti,et al.  Theory of Probability: A Critical Introductory Treatment , 2017 .

[10]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[11]  Marco Zaffalon,et al.  Sum-of-squares for bounded rationality , 2019, Int. J. Approx. Reason..

[12]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[13]  Marco Zaffalon,et al.  Conglomerable coherence , 2013, Int. J. Approx. Reason..

[14]  Barbara Vantaggi,et al.  Statistical matching of multiple sources: A look through coherence , 2008, Int. J. Approx. Reason..

[15]  Didier Dubois,et al.  Possibility theory , 2018, Scholarpedia.

[16]  Thomas Lukasiewicz,et al.  Probabilistic logic under coherence: complexity and algorithms , 2005, Annals of Mathematics and Artificial Intelligence.

[17]  Kun-Lin Kuo,et al.  Exactly and almost compatible joint distributions for high-dimensional discrete conditional distributions , 2017, J. Multivar. Anal..

[18]  Rina Dechter,et al.  Tree-Clustering Schemes for Constraint-Processing , 1988, AAAI.

[19]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[20]  Jirina Vejnarová A note on the interval-valued marginal problem and its maximum entropy solution , 1998, Kybernetika.

[21]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[22]  Prakash P. Shenoy,et al.  Axioms for probability and belief-function proagation , 1990, UAI.

[23]  Fabio Gagliardi Cozman,et al.  Probabilistic satisfiability and coherence checking through integer programming , 2013, Int. J. Approx. Reason..

[24]  Marco Zaffalon,et al.  Coherence graphs , 2009, Artif. Intell..

[25]  Marco Zaffalon,et al.  Conformity and independence with coherent lower previsions , 2016, Int. J. Approx. Reason..

[26]  Denis Deratani Mauá,et al.  Updating credal networks is approximable in polynomial time , 2012, Int. J. Approx. Reason..

[27]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[28]  P. M. Williams,et al.  Notes on conditional previsions , 2007, Int. J. Approx. Reason..

[29]  Marco Zaffalon,et al.  Conservative Inference Rule for Uncertain Reasoning under Incompleteness , 2009, J. Artif. Intell. Res..

[30]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[31]  Marco Zaffalon,et al.  A Polarity Theory for Sets of Desirable Gambles , 2017, ISIPTA.

[32]  Andrea Capotorti,et al.  Correction of incoherent conditional probability assessments , 2010, Int. J. Approx. Reason..

[33]  Fabio Gagliardi Cozman,et al.  Notes on "Notes on conditional previsions" , 2007, Int. J. Approx. Reason..

[34]  P. Walley,et al.  Direct algorithms for checking consistency and making inferences from conditional probability assessments , 2004 .

[35]  Milan Studený,et al.  Marginal Problem in Different Calculi of AI , 1994, IPMU.

[36]  Vakgroep Elektrische EnergietechniekTechnologiepark Possibility Theory Ii Conditional Possibility , 1997 .

[37]  Pierre Hansen,et al.  Probabilistic satisfiability with imprecise probabilities , 1999, Int. J. Approx. Reason..

[38]  Didier Dubois,et al.  Bayesian conditioning in possibility theory , 1997, Fuzzy Sets Syst..

[39]  B. Arnold,et al.  Conditional specification of statistical models , 1999 .

[40]  Eduardo L. Fermé,et al.  Belief Revision , 2007, Inteligencia Artif..

[41]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[42]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations for Polynomial Optimization with Sparsity , 2006, ICMS.

[43]  Gert de Cooman,et al.  Irrelevant and independent natural extension for sets of desirable gambles , 2012, J. Artif. Intell. Res..

[44]  Colin Howson,et al.  Can logic be combined with probability? Probably , 2009, J. Appl. Log..

[45]  Gert de Cooman,et al.  Conglomerable natural extension , 2012, Int. J. Approx. Reason..

[46]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[47]  Marco Zaffalon,et al.  Axiomatising Incomplete Preferences through Sets of Desirable Gambles , 2017, J. Artif. Intell. Res..

[48]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[49]  Peter Walley,et al.  Towards a unified theory of imprecise probability , 2000, Int. J. Approx. Reason..

[50]  R. Scozzafava,et al.  Probabilistic Logic in a Coherent Setting , 2002 .

[51]  Heinz J. Skala The existence of probability measures with given marginals , 1993 .

[52]  Wicher P. Bergsma,et al.  Marginal models for categorical data , 2002 .

[53]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .

[54]  Rafael Chaves,et al.  Entropic Inequalities and Marginal Problems , 2011, IEEE Transactions on Information Theory.

[55]  Andrea Capotorti,et al.  Incoherence correction strategies in statistical matching , 2012, Int. J. Approx. Reason..

[56]  Linda C. van der Gaag,et al.  Probabilistic Graphical Models , 2014, Lecture Notes in Computer Science.

[57]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[58]  Edward H. Ip,et al.  Conditionally specified continuous distributions , 2008 .

[59]  M. Zahn Solving of constraint satisfaction problems using join trees , 1994, Proceedings of International Conference on Expert Systems for Development.

[60]  T. Hailperin,et al.  Best Possible Inequalities for the Probability of a Logical Function of Events , 1965 .

[61]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[62]  Wagner A. Kamakura,et al.  Statistical Data Fusion for Cross-Tabulation , 1997 .

[63]  Marco Zaffalon,et al.  Probability and time , 2013, Artif. Intell..

[64]  Francesco M. Malvestuto Existence of extensions and product extensions for discrete probability distributions , 1988, Discret. Math..

[65]  L. Rüschendorf Construction of multivariate distributions with given marginals , 1985 .

[66]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[67]  Milan Studený,et al.  Conditional independence and natural conditional functions , 1995, Int. J. Approx. Reason..

[68]  H. Kellerer Verteilungsfunktionen mit gegebenen Marginalverteilungen , 1964 .

[69]  Radim Jirousek,et al.  Solution of the marginal problem and decomposable distributions , 1991, Kybernetika.

[70]  W. Spears Probabilistic Satisfiability , 1992 .

[71]  Gert de Cooman,et al.  Marginal extension in the theory of coherent lower previsions , 2007, Int. J. Approx. Reason..

[72]  B. Arnold,et al.  Compatibility of partial or complete conditional probability specifications , 2004 .

[73]  Fabio Gagliardi Cozman,et al.  The Inferential Complexity of Bayesian and Credal Networks , 2005, IJCAI.

[74]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[75]  L. Dubins Finitely Additive Conditional Probabilities, Conglomerability and Disintegrations , 1975 .

[76]  B. Arnold,et al.  Compatible Conditional Distributions , 1989 .

[77]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[78]  Erik Quaeghebeur,et al.  Characterizing coherence, correcting incoherence , 2015, Int. J. Approx. Reason..

[79]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[80]  L. Ferrari Teoria delle Probabilità , 2017 .

[81]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[82]  Alfred Tarski,et al.  Logic, Semantics, Metamathematics: Papers from 1923 to 1938 , 1958 .

[83]  Benjamin Okner,et al.  Data Matching and Merging: An Overview , 1974 .

[84]  Marco Zaffalon,et al.  Desirability foundations of robust rational decision making , 2018, Synthese.

[85]  Nic Wilson,et al.  Revision rules for convex sets of probabilities , 1995 .

[86]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[87]  Marco Zaffalon,et al.  Conditional models: Coherence and inference through sequences of joint mass functions , 2010 .

[88]  Gert de Cooman,et al.  Belief models: An order-theoretic investigation , 2005, Annals of Mathematics and Artificial Intelligence.

[89]  Pierre Hansen,et al.  Column Generation Methods for Probabilistic Logic , 1989, INFORMS J. Comput..

[90]  Gert de Cooman,et al.  Accept & reject statement-based uncertainty models , 2012, Int. J. Approx. Reason..

[91]  Prakash P. Shenoy,et al.  A valuation-based language for expert systems , 1989, Int. J. Approx. Reason..

[92]  Enrique Miranda,et al.  Coherent updating of non-additive measures , 2015, Int. J. Approx. Reason..

[93]  Dieter Denneberg Conditioning (updating) non-additive measures , 1994, Ann. Oper. Res..

[94]  P. Krauss,et al.  Representation of conditional probability measures on Boolean algebras , 1968 .

[95]  R. Halin S-functions for graphs , 1976 .

[96]  Alex Pothen,et al.  Distributed Multifrontal Factorization Using Clique Trees , 1991, SIAM Conference on Parallel Processing for Scientific Computing.