On an integral equation for the free-boundary of stochastic, irreversible investment problems

In this paper, we derive a new handy integral equation for the free-boundary of infinite time horizon, continuous time, stochastic, irreversible investment problems with uncertainty modeled as a one-dimensional, regular diffusion $X$. The new integral equation allows to explicitly find the free-boundary $b(\cdot)$ in some so far unsolved cases, as when the operating profit function is not multiplicatively separable and $X$ is a three-dimensional Bessel process or a CEV process. Our result follows from purely probabilistic arguments. Indeed, we first show that $b(X(t))=l^*(t)$, with $l^*$ the unique optional solution of a representation problem in the spirit of Bank-El Karoui [Ann. Probab. 32 (2004) 1030-1067]; then, thanks to such an identification and the fact that $l^*$ uniquely solves a backward stochastic equation, we find the integral problem for the free-boundary.

[1]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[2]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[3]  N. Karoui,et al.  A stochastic representation theorem with applications to optimization and obstacle problems , 2004 .

[4]  T. Kobila A Class of Solvable Stochastic Investment Problems Involving Singular Controls , 1993 .

[5]  David Williams Diffusions, Markov Processes and Martingales: Volume 2, Ito Calculus , 2000 .

[6]  Mihail Zervos,et al.  A Model for Reversible Investment Capacity Expansion , 2007, SIAM J. Control. Optim..

[7]  I. Karatzas,et al.  A new approach to the skorohod problem, and its applications , 1991 .

[8]  S. Jacka Optimal Stopping and the American Put , 1991 .

[9]  Kristin Reikvam,et al.  A Connection between Singular Stochastic Control and Optimal Stopping , 2004 .

[10]  S. Shreve,et al.  Connections between Optimal Stopping and Singular Stochastic Control I. Monotone Follower Problems , 1984 .

[11]  G. Peskir,et al.  A Change-of-Variable Formula with Local Time on Surfaces , 2004 .

[12]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[13]  Endre Csáki,et al.  On the joint distribution of the maximum and its location for a linear diffusion , 1987 .

[14]  Goran Peskir,et al.  A Change-of-Variable Formula with Local Time on Curves , 2005 .

[15]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[16]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae (Second Edition) , 2003 .

[17]  H. Pham,et al.  Smooth-fit principle for a degenerate two-dimensional singular stochastic control problem arising in irreversible investment , 2012 .

[18]  Giorgio Ferrari,et al.  Identifying the Free Boundary of a Stochastic, Irreversible Investment Problem via the Bank-El Karoui Representation Theorem , 2014, SIAM J. Control. Optim..

[19]  Huyên Pham Explicit Solution to an Irreversible Investment Model with a Stochastic Production Capacity , 2006 .

[20]  Claude Dellacherie,et al.  Sur des problèmes de régularisation, de recollement et d'interpolation en théorie des martingales , 1981 .

[21]  Frank Riedel,et al.  On Irreversible Investment , 2006 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  Ulrich G. Haussmann,et al.  On a Stochastic, Irreversible Investment Problem , 2009, SIAM J. Control. Optim..

[24]  Peter Bank Optimal Control under a Dynamic Fuel Constraint , 2005, SIAM J. Control. Optim..

[25]  Peter Bank,et al.  On Gittins’ index theorem in continuous time , 2007 .

[26]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[27]  J. L. Pedersen,et al.  On Nonlinear Integral Equations Arising in Problems of Optimal Stopping , 2002 .

[28]  Ulrich G. Haussmann,et al.  Explicit Solution of a Stochastic, Irreversible Investment Problem and Its Moving Threshold , 2005, Math. Oper. Res..

[29]  H. Föllmer,et al.  American Options, Multi–armed Bandits, and Optimal Consumption Plans: A Unifying View , 2003 .

[30]  C. Baumgarten,et al.  Parameter-dependent optimal stopping problems for one-dimensional diffusions , 2010 .

[31]  G. Ferrari,et al.  A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis , 2013 .

[32]  Frank Riedel,et al.  Optimal consumption choice with intertemporal substitution , 2001 .

[33]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[34]  Eduardo S. Schwartz,et al.  Investment Under Uncertainty. , 1994 .

[35]  M. Kohlmann,et al.  Connections between optimal stopping and singular stochastic control , 1998 .

[36]  Jan-Henrik Steg,et al.  Irreversible investment in oligopoly , 2012, Finance Stochastics.

[37]  Anders Øksendal,et al.  Irreversible investment problems , 2000, Finance Stochastics.

[38]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[39]  Ioannis Karatzas,et al.  Irreversible investment and industry equilibrium , 1996, Finance Stochastics.

[40]  Ioannis Karatzas,et al.  The monotone follower problem in stochastic decision theory , 1981 .

[41]  Giorgio Ferrari,et al.  Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources , 2012, SIAM J. Control. Optim..

[42]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[43]  A non-linear Riesz respresentation in probabilistic potential theory , 2005 .