IBM PAIRS: Scalable Big Geospatial-Temporal Data and Analytics As-a-Service

The rapid growth of geospatial-temporal data from sources like satellites, drones, weather modeling, IoT sensors etc., accumulating at a pace of PetaBytes to ExaBytes annually, opens unprecedented opportunities for both scientific and industrial applications. However, the sheer size and complexity of such data presents significant challenges for conventional geospatial information systems (GIS) which are supported by relational geospatial databases and cloud-based geospatial services based on file systems (mostly manifested as object stores or “cold” tape storages).

[1]  Hendrik F. Hamann,et al.  IBM PAIRS curated big data service for accelerated geospatial data analytics and discovery , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[2]  S. Majumdar,et al.  An Examination of Model Track Forecast Errors for Hurricane Ike (2008) in the Gulf of Mexico , 2011 .

[3]  Keith C. Clarke,et al.  Error and Bias in Determining Exposure Potential of Children at School Locations Using Proximity-Based GIS Techniques , 2007, Environmental health perspectives.

[4]  Lucid Synchrone,et al.  Tutorial and Reference Manual , 2007 .

[5]  J. Suomalainen,et al.  Full waveform hyperspectral LiDAR for terrestrial laser scanning. , 2012, Optics express.

[6]  Andrea C. Arpaci-Dusseau,et al.  Analysis of HDFS under HBase: a facebook messages case study , 2014, FAST.

[7]  Christopher N. Eichelberger,et al.  GeoMesa: a distributed architecture for spatio-temporal fusion , 2015, Defense + Security Symposium.

[8]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[9]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[10]  Geoffrey C. Fox,et al.  MapReduce for Data Intensive Scientific Analyses , 2008, 2008 IEEE Fourth International Conference on eScience.

[11]  Wang Zhou,et al.  N-dimensional geospatial data and analytics for critical infrastructure risk assessment , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[12]  Shih-Lung Shaw,et al.  Exploratory data analysis of activity diary data: a space-time GIS approach , 2011 .

[13]  Xia Dong,et al.  An Evaluation of the Distribution of Remote Automated Weather Stations (RAWS) , 2010 .

[14]  L. Tang,et al.  Drone remote sensing for forestry research and practices , 2015, Journal of Forestry Research.

[15]  Neal Lott,et al.  The Integrated Surface Database: Recent Developments and Partnerships , 2011 .

[16]  E. Mcpherson,et al.  Urban Tree Growth Modeling , 2012, Arboriculture & Urban Forestry.

[17]  Michael A. Whitby,et al.  GeoWave: Utilizing Distributed Key-Value Stores for Multidimensional Data , 2017, SSTD.

[18]  Frank Warmerdam,et al.  The Geospatial Data Abstraction Library , 2008 .

[19]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[20]  Jian Guo,et al.  Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology , 2010 .

[21]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[22]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[23]  Deepak Vohra Defining the Row Keys , 2016 .

[24]  Chuck Lam,et al.  Hadoop in Action , 2010 .

[25]  Nick Dimiduk,et al.  HBase in Action , 2012 .

[26]  Joseph Michalsky,et al.  An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD) , 2008 .

[27]  G. Hooker Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .

[28]  Bernd Resch,et al.  GIS-Based Planning and Modeling for Renewable Energy: Challenges and Future Research Avenues , 2014, ISPRS Int. J. Geo Inf..

[29]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[30]  S. Saha,et al.  The NCEP Climate Forecast System , 2006 .

[31]  気象庁 Outline of the operational numerical weather prediction at the Japan Meteorological Agency , 1977 .

[32]  Paul Zikopoulos,et al.  Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data , 2011 .

[33]  May Yuan Challenges and Critical Issues for Temporal GIS Research and Technologies , 2009 .

[34]  Nigel Hinds,et al.  PAIRS: A scalable geo-spatial data analytics platform , 2015, IEEE BigData.