Neural selection and control of visually guided eye movements.

We review neural correlates of perceptual and motor decisions, examining whether the time they occupy explains the duration and variability of behavioral reaction times. The location of a salient target is identified through a spatiotemporal evolution of visually evoked activation throughout the visual system. Selection of the target leads to stochastic growth of movement-related activity toward a fixed threshold to generate the gaze shift. For a given image, the neural concomitants of perceptual processing occupy a relatively constant interval so that stochastic variability in response generation introduces additional variability in reaction times.

[1]  R. Yerkes A STUDY OF THE REACTIONS AND REACTION TIME OF THE MEDUSA GONIONEMA MURBACHII TO PHOTIC STIMULI , 1903 .

[2]  F. Donders On the speed of mental processes. , 1969, Acta psychologica.

[3]  Saul Sternberg,et al.  The discovery of processing stages: Extensions of Donders' method , 1969 .

[4]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[5]  A. Fuchs,et al.  Effect of mean reaction time on saccadic responses to two-step stimuli with horizontal and vertical components , 1975, Vision Research.

[6]  M. Posner Chronometric explorations of mind , 1978 .

[7]  D. Sparks Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset , 1978, Brain Research.

[8]  W. Becker,et al.  An analysis of the saccadic system by means of double step stimuli , 1979, Vision Research.

[9]  Benjamin L. Somberg,et al.  Stimulus processing during eye fixations. , 1981 .

[10]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[11]  Robert Nullmeyer,et al.  Human reaction time: Toward a general theory , 1982 .

[12]  G. Logan On the ability to inhibit thought and action , 1984 .

[13]  Bruno G. Breitmeyer,et al.  Visual masking : an integrative approach , 1984 .

[14]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[15]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[16]  J. Requin,et al.  Changes in neuronal activity of the monkey precentral cortex during preparation for movement. , 1986, Journal of neurophysiology.

[17]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[18]  P. Schiller,et al.  The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. , 1987, Journal of neurophysiology.

[19]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[20]  David E. Irwin,et al.  Modern mental chronometry , 1988, Biological Psychology.

[21]  C. Eriksen,et al.  Pre- and poststimulus activation of response channels: a psychophysiological analysis. , 1988, Journal of experimental psychology. Human perception and performance.

[22]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[23]  R. Wurtz,et al.  The Neurobiology of Saccadic Eye Movements , 1989 .

[24]  P. Viviani Eye movements in visual search: cognitive, perceptual and motor control aspects. , 1990, Reviews of oculomotor research.

[25]  Jeremy M Wolfe,et al.  Modeling the role of parallel processing in visual search , 1990, Cognitive Psychology.

[26]  J. Schall Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. , 1991, Journal of neurophysiology.

[27]  A. Jacobs,et al.  The effects of target discriminability and retinal eccentricity on saccade latencies: An analysis in terms of variable-criterion theory , 1990, Psychological research.

[28]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[29]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[30]  J J Knierim,et al.  Neural responses to visual texture patterns in middle temporal area of the macaque monkey. , 1992, Journal of neurophysiology.

[31]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[32]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[33]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. , 1993, Journal of neurophysiology.

[34]  S. Bisti,et al.  Light sensitivity, adaptation and saturation in mammalian rods. , 1993, Progress in brain research.

[35]  Ehtibar N. Dzhafarov,et al.  Grice-representability of response time distribution families , 1993 .

[36]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[37]  C. Bruce,et al.  Topography of projections to the frontal lobe from the macaque frontal eye fields , 1993, The Journal of comparative neurology.

[38]  M. Segraves,et al.  Primate frontal eye field activity during natural scanning eye movements. , 1994, Journal of neurophysiology.

[39]  K. Nakayama,et al.  Priming of pop-out: I. Role of features , 1994, Memory & cognition.

[40]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Jeremiah Y. Cohen,et al.  The neural basis of saccade target selection , 1995 .

[43]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[44]  C. Koch,et al.  Are we aware of neural activity in primary visual cortex? , 1995, Nature.

[45]  M. Segraves,et al.  Acute activation and inactivation of macaque frontal eye field with GABA-related drugs. , 1995, Journal of neurophysiology.

[46]  R. H. S. Carpenter,et al.  Neural computation of log likelihood in control of saccadic eye movements , 1995, Nature.

[47]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Schall,et al.  Countermanding saccades in macaque , 1995, Visual Neuroscience.

[49]  M. A. Steinmetz,et al.  Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. , 1995, Cerebral cortex.

[50]  Michael G. H. Coles,et al.  Mental chronometry and the study of human information processing. , 1995 .

[51]  J H Maunsell,et al.  The Brain's Visual World: Representation of Visual Targets in Cerebral Cortex , 1995, Science.

[52]  D. Robinson,et al.  Covert orienting of attention in macaques. II. Contributions of parietal cortex. , 1995, Journal of neurophysiology.

[53]  N. Weinberger Dynamic regulation of receptive fields and maps in the adult sensory cortex. , 1995, Annual Review of Neuroscience.

[54]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[55]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[56]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[57]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[58]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[59]  M N Shadlen,et al.  Motion perception: seeing and deciding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. J. Erkelens,et al.  Control of fixation duration in a simple search task , 1996, Perception & psychophysics.

[61]  H L Kundel,et al.  Nature of expertise in searching mammograms for breast masses , 1996, Medical Imaging.

[62]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. , 1996, Journal of neurophysiology.

[63]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[64]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[65]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[66]  Edward J. Tehovnik,et al.  Reversible inactivation of macaque frontal eye field , 1997, Experimental Brain Research.

[67]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[68]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[69]  D. Munoz,et al.  Neuronal Activity in Monkey Superior Colliculus Related to the Initiation of Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[70]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[71]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[72]  P. Glimcher,et al.  Responses of intraparietal neurons to saccadic targets and visual distractors. , 1997, Journal of neurophysiology.

[73]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[74]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[75]  N. P. Bichot,et al.  Spatial selection via feature-driven inhibition of distractor locations , 1998, Perception & psychophysics.

[76]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[77]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[78]  N. P. Bichot,et al.  Neural correlates of visual and motor decision processes , 1998, Current Opinion in Neurobiology.

[79]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[80]  R. Ratcliff,et al.  Connectionist and diffusion models of reaction time. , 1999, Psychological review.