Explicit symplectic partitioned Runge-Kutta-Nyström methods for non-autonomous dynamics

We consider explicit symplectic partitioned Runge-Kutta (ESPRK) methods for the numerical integration of non-autonomous dynamical systems. It is known that, in general, the accuracy of a numerical method can diminish considerably whenever an explicit time dependence enters the differential equations and the order reduction can depend on the way the time is treated. In the present paper, we demonstrate that explicit symplectic partitioned Runge-Kutta-Nystrom (ESPRKN) methods specifically designed for second order differential equations ddt(M^-^1q@?)=f(q,t), undergo an order reduction when M=M(t), independently of the way the time is approximated. Furthermore, by means of symmetric quadrature formulae of appropriate order, we propose a different but still equivalent formulation of the original non-autonomous problem that treats the time as two added coordinates of an enlarged differential system. In so doing, the order reduction is avoided as confirmed by the presented numerical tests.

[1]  J. Struckmeier,et al.  Canonical transformations and exact invariants for time‐dependent Hamiltonian systems , 2001, Annalen der Physik.

[2]  E. Hairer,et al.  Further reduction in the number of independent order conditions for sympletic, explicit partitioned Runge-Kutta and Runge-Kutta-Nystro¨m methods , 1995 .

[3]  Fernando Casas,et al.  Splitting methods in the numerical integration of non-autonomous dynamical systems , 2012 .

[4]  A. Ikot,et al.  Quantum Damped Mechanical Oscillator , 2010 .

[5]  R. K. Preston,et al.  Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator , 1977 .

[6]  E. Hairer Backward analysis of numerical integrators and symplectic methods , 1994 .

[7]  J. M. Sanz-Serna,et al.  Classical numerical integrators for wave‐packet dynamics , 1996 .

[8]  S. Blanes,et al.  Splitting methods for non-autonomous separable dynamical systems , 2006 .

[9]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[10]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[11]  Robert D. Skeel,et al.  Explicit canonical methods for Hamiltonian systems , 1992 .

[12]  Fernando Casas,et al.  Splitting methods for non-autonomous linear systems , 2007, Int. J. Comput. Math..

[13]  P. Leach Harmonic oscillator with variable mass , 1983 .

[14]  J. Awrejcewicz,et al.  Stick-slip chaos detection in coupled oscillators with friction , 2005 .

[15]  Ander Murua,et al.  On Order Conditions for Partitioned Symplectic Methods , 1997 .

[16]  J. M. Sanz-Serna,et al.  Partitioned Runge-Kutta methods for separable Hamiltonian problems , 1993 .

[17]  S. Gray,et al.  Classical Hamiltonian structures in wave packet dynamics , 1994 .

[18]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[19]  J. Cerveró,et al.  On the quantum theory of the damped harmonic oscillator , 1984 .

[20]  Fasma Diele,et al.  Splitting and composition methods for explicit time dependence in separable dynamical systems , 2010, J. Comput. Appl. Math..