The effect of active extensional tectonics on the structural controls and heat transport mechanism in the Menderes Massif geothermal province: Inferred from three-dimensional electrical resistivity structure of the Kurşunlu geothermal field (Gediz Graben, western Anatolia)

Abstract The current study in the Menderes Massif geothermal province aims to assert a crustal-scale geoelectrical evidence showing the role of extensional tectonics on the flow of geothermal fluids through both high-angle and low-angle normal (detachment) faults and on the heat transport mechanism in the convection dominated-amagmatic geothermal play systems, on the basis of three-dimensional electrical resistivity structure of the Kursunlu geothermal field, Gediz Graben, western Anatolia. The electrical resistivity structure was derived from the three-dimensional inversion of the magnetotelluric data acquired from 74 sites in the period range from 0.001 s to 1000s. The resistivity model brings out two different types of reservoirs, namely (i) a shallow low resistivity reservoir (secondary reservoir) corresponding to the Kursunlu hot spring in the sedimentary layer of the Gediz Graben and (ii) a deep more resistive reservoir (primary reservoir) beneath a prominent highly conductive ( ≤ 10 ohm-m) hydrothermal clay alteration zone. The circulation of geothermal fluids in reservoirs is dominantly controlled by high-angle normal faults including the main graben-bounding fault and low-angle Gediz detachment fault. The possible heat source for the geothermal system has been attributed to high heat arising from upwelling asthenosphere through the mantle window in the northward subducting and retreating African slab, which has been accompanied by crustal extension resulting in a thin crust and shallow mantle, and the deeply penetrating main graben-bounding fault acting as a conduit through which heat is transported from the deeper parts of the crust to near surface probably controls heat transport in the area.

[1]  S. Soengkono,et al.  Using array MT data to image the crustal resistivity structure of the southeastern Taupo Volcanic Zone, New Zealand , 2015 .

[2]  J. Shulmeister,et al.  Linking CO2 degassing in active fault zones to long-term changes in water balance and surface water circulation, an example from SW Turkey , 2019, Quaternary Science Reviews.

[3]  Demitris Paradissis,et al.  Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus , 2000 .

[4]  G. Newman,et al.  Three-dimensional magnetotelluric characterization of the Coso geothermal field , 2008 .

[5]  N. Çiftçi,et al.  Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin , 2009 .

[6]  H. Sözbilir Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey , 2005 .

[7]  M. Bozcu,et al.  When Did the Western Anatolian Grabens Begin to Develop? , 2000, Geological Society, London, Special Publications.

[8]  R. Pysklywec,et al.  Mantle flow uplift of western Anatolia and the Aegean: Interpretations from geophysical analyses and geodynamic modeling , 2012 .

[9]  Y. Dilek Collision tectonics of the Mediterranean region: Causes and consequences , 2006 .

[10]  Prasanta K. Patro,et al.  Magnetotelluric Studies for Hydrocarbon and Geothermal Resources: Examples from the Asian Region , 2017, Surveys in Geophysics.

[11]  A. Hampel,et al.  Spatiotemporal evolution of brittle normal faulting and fluid infiltration in detachment fault systems: A case study from the Menderes Massif, western Turkey , 2013 .

[12]  Ö. F. Gürer,et al.  Conductivity Structure along the Gediz Graben, West Anatolia, Turkey: Tectonic Implications , 2001 .

[13]  Inga Moeck,et al.  Catalog of geothermal play types based on geologic controls , 2014 .

[14]  L. Jolivet,et al.  Mediterranean extension and the Africa‐Eurasia collision , 2000 .

[15]  L. Jolivet,et al.  Miocene detachment in Crete and exhumation P‐T‐t paths of high‐pressure metamorphic rocks , 1996 .

[16]  G. Zandt,et al.  Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography , 2011 .

[17]  Orhan Mertoglu,et al.  Geothermal Country Update Report of Turkey (2010-2015) , 2009 .

[18]  Ali Koçak,et al.  Curie-point depth map of Turkey , 2005 .

[19]  R. Reilinger,et al.  Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data , 1997 .

[20]  J. Dewey,et al.  Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone , 1979 .

[21]  Alan G. Jones,et al.  The magnetotelluric method : theory and practice , 2012 .

[22]  X. Pichon,et al.  The hellenic arc and trench system: A key to the neotectonic evolution of the eastern mediterranean area , 1979 .

[23]  O. M. Ilkişik REGIONAL HEAT-FLOW IN WESTERN ANATOLIA USING SILICA TEMPERATURE ESTIMATES FROM THERMAL SPRINGS , 1995 .

[24]  J. Dewey Extensional collapse of orogens , 1988 .

[25]  Ş. Şimşek,et al.  Geothermal model of Denizli, Sarayköy-Buldan area , 1985 .

[26]  Y. Dilek,et al.  Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey , 2011 .

[27]  Manfred P. Hochstein,et al.  Assessment and modelling of geothermal reservoirs (small utilization schemes) , 1988 .

[28]  D. McKenzie Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions , 1978 .

[29]  N. Çiftçi,et al.  Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey , 2009 .

[30]  L. Jolivet,et al.  Aegean tectonics: Strain localisation, slab tearing and trench retreat , 2013 .

[31]  W. Soyer,et al.  Interpretation of 3D Magnetotelluric (MT) Surveys: Basement Conductors of the Menderes Massif, Western Turkey , 2012 .

[32]  N. Çiftçi,et al.  Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey , 2007, Geological Magazine.

[33]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[34]  V. Isik,et al.  Ductile-brittle transition along the Alasehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey , 2003 .

[35]  D. Hilton,et al.  Helium-carbon relationships in geothermal fluids of western Anatolia, Turkey , 2008 .

[36]  Y. Dilek,et al.  Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt , 2009 .

[37]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[38]  A. Ozdemir,et al.  An importance of the geological investigations in Kavaklıdere geothermal field (Turkey) , 2017 .

[39]  M. Crespi,et al.  On the extension in western Anatolia and the Aegean sea , 2002 .

[40]  E. Bozkurt,et al.  Introduction: Evolution of continental extensional tectonics of western Turkey , 2005 .

[41]  A. Koçyi̇ği̇t An overview on the main stratigraphic and structural features of a geothermal area: the case of Nazilli-Buharkent section of the Büyük Menderes Graben, SW Turkey , 2015 .

[42]  L. Gallardo,et al.  What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey , 2013 .

[43]  Oliver Ritter,et al.  Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California , 2013 .

[44]  B. C. Scott,et al.  The cause of N-S extensional tectonics in western Turkey: Tectonic escape vs back-arc spreading vs orogenic collapse , 1996 .

[45]  John R. Booker,et al.  The Magnetotelluric Phase Tensor: A Critical Review , 2013, Surveys in Geophysics.

[46]  F. Bilim Investigations into the tectonic lineaments and thermal structure of Kutahya-Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data , 2007 .

[47]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[48]  Vladimir I. Dmitriev,et al.  Models and Methods of Magnetotellurics , 2008 .

[49]  Brian J. Mitchell,et al.  Crustal thickness variations in the Aegean region and implications for the extension of continental crust , 2005 .

[50]  N. Çiftçi,et al.  In-situ stress field and mechanics of fault reactivation in the Gediz Graben, Western Turkey , 2013 .

[51]  Yücel Yılmaz,et al.  Tethyan evolution of Turkey: A plate tectonic approach , 1981 .

[52]  Niyazi Aksoy,et al.  Geothermal energy in Turkey: 2008 update , 2009 .

[53]  A. Lachenbruch,et al.  Thermal regime of the southern Basin and Range Provincec 1. Heat flow data from Arizona and the Mojave Desert of California and Nevada , 1994 .

[54]  L. Jolivet,et al.  Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics , 2018, Earth and Planetary Science Letters.

[55]  E. Ghanbari,et al.  Classification and Assessment of Geothermal Resources in Azerbaijan-Iran , 2000 .

[56]  D. Alekseev,et al.  Causality and dispersion relations in electrical prospecting , 2018 .

[57]  Ö. F. Gürer,et al.  Neotectonics of the SW Marmara region, NW Anatolia, Turkey , 2006, Geological Magazine.

[58]  Alý Koçyiđit,et al.  Evidence from the Gediz graben for episodic two-stage extension in western Turkey , 1999, Journal of the Geological Society.

[59]  I. Çemen Extensional tectonics in the Basin and Range, the Aegean, and Western Anatolia: Introduction , 2010 .

[60]  K. Gessner,et al.  Crustal fluid flow in hot continental extension: tectonic framework of geothermal areas and mineral deposits in western Anatolia , 2017, Special Publications.

[61]  B. Kaypak,et al.  3-D imaging of the upper crust beneath the Denizli geothermal region by local earthquake tomography, western Turkey , 2012 .

[62]  A. K. Agarwal,et al.  Characterization of the magnetotelluric tensor in terms of its invariants , 2000 .

[63]  A. Kaya The effects of extensional structures on the heat transport mechanism: An example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey) , 2015 .

[64]  C. Faccenna,et al.  Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey) , 2017 .

[65]  L. Jolivet,et al.  Cenozoic geodynamic evolution of the Aegean , 2010 .

[66]  A. Paul,et al.  Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia , 2013 .

[67]  Robert W. King,et al.  Global Positioning System measurements of present‐day crustal movements in the Arabia‐Africa‐Eurasia plate collision zone , 1997 .

[68]  Gerard Muñoz,et al.  Exploring for Geothermal Resources with Electromagnetic Methods , 2013, Surveys in Geophysics.

[69]  J. Faulds,et al.  structural controls on Geothermal systems in Western turkey: A Preliminary report , 2009 .

[70]  N. Çiftçi,et al.  Pattern of normal faulting in the Gediz Graben, SW Turkey , 2009 .

[71]  M. Tokçaer,et al.  Geotectonic Setting and Origin of the Youngest Kula Volcanics (Western Anatolia), with a New Emplacement Model , 2005 .

[72]  L. Jolivet,et al.  Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey) , 2018, International Journal of Earth Sciences.

[73]  E. Bozkurt Origin of NE-trending basins in western Turkey , 2003 .

[74]  D. Cassard,et al.  Multistage exhumation of the Menderes Massif, western Anatolia (Turkey) , 2001 .

[75]  J. M. Richardson-Bunbury The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben , 1996, Geological Magazine.

[76]  M. C. Alçiçek,et al.  Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayıt Geothermal Field (Denizli Basin, SW Anatolia, Turkey) , 2019, Hydrogeology Journal.

[77]  N. Meqbel,et al.  Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling , 2016 .

[78]  L. Muffler,et al.  Methods for regional assessment of geothermal resources , 1977 .

[79]  T. Ustaömer,et al.  Curie Point Depths Based on Spectrum Analysis of Aeromagnetic Data, West Anatolian Extensional Province, Turkey , 2005 .

[80]  Darrell B. Hall,et al.  Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics , 2008 .

[81]  S. Thiel,et al.  Three dimensional conductivity model of the Tendaho High Enthalpy Geothermal Field, NE Ethiopia , 2015 .

[82]  C. Doglioni,et al.  Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution , 2005 .

[83]  H. Bibby,et al.  The magnetotelluric phase tensor , 2004 .

[84]  W. Spakman,et al.  Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt , 1998 .

[85]  G. W. Hohmann,et al.  A numerical evaluation of electromagnetic methods in geothermal exploration , 1996 .

[86]  H. Akgün,et al.  Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology , 2019, Geothermics.

[87]  Hülya Alçiçek,et al.  Origin and evolution of the thermal waters from the Pamukkale Geothermal Field (Denizli Basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry , 2019, Journal of Volcanology and Geothermal Research.

[88]  W. Spakman,et al.  On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene , 1988 .

[89]  A. Şengör,et al.  Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study , 1985 .

[90]  C. Faccenna,et al.  The Gediz Supradetachment System (SW Turkey): Magmatism, Tectonics, and Sedimentation During Crustal Extension , 2019, Tectonics.

[91]  Y. Dilek,et al.  Fault kinematics in supradetachment basin formation, Menderes core complex of western Turkey , 2013 .

[92]  H. Sözbilir,et al.  Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey , 2004, Geological Magazine.

[93]  H. Karabulut,et al.  Anisotropic Pn tomography of Turkey and adjacent regions , 2011 .

[94]  N. Çiftçi,et al.  Hydrocarbon occurrences in the western Anatolian (Aegean) grabens, Turkey: Is there a working petroleum system? , 2010 .

[95]  S. Vural,et al.  The Relation of Geothermal Resources with Young Tectonics in the Gediz Graben (West Anatolia, Turkey) and Their Hydrogeochemical Analyses , 2010 .

[96]  D. Hilton,et al.  Helium and heat distribution in western Anatolia, Turkey: Relationship to active extension and volcanism , 2006 .

[97]  M. E. Candansayar,et al.  The conductivity structure of the Gediz Graben geothermal area extracted from 2D and 3D magnetotelluric inversion: Synthetic and field data applications , 2017 .

[98]  G. Tarcan Mineral saturation and scaling tendencies of waters discharged from wells (>150 şC) in geothermal areas of Turkey , 2005 .

[99]  J. Bunbury,et al.  The determination of fault movement history from the interaction of local drainage with volcanic episodes , 2001, Geological Magazine.

[100]  K. Richards-Dinger,et al.  The Coso geothermal field: A nascent metamorphic core complex , 2005 .

[101]  L. Jolivet,et al.  The geological signature of a slab tear below the Aegean , 2015 .

[102]  C. Langereis,et al.  Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex , 2015 .

[103]  Gary D. Egbert,et al.  ModEM: A modular system for inversion of electromagnetic geophysical data , 2014, Comput. Geosci..

[104]  A. Aydemir,et al.  Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey , 2016 .

[105]  T. Caldwell,et al.  Imaging the deep source of the Rotorua and Waimangu geothermal fields, Taupo Volcanic Zone, New Zealand , 2016 .

[106]  Demitris Paradissis,et al.  GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions , 2005 .

[107]  A. Brogi,et al.  Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey) , 2018 .

[108]  Ali Bülbül,et al.  Reservoir and hydrogeochemical characterizations of geothermal fields in Salihli, Turkey , 2012 .