Shape-Memory Alloys Handbook

[1]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[2]  David L. Atherton,et al.  CORRIGENDUM: Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect , 1984 .

[3]  Christian Lexcellent,et al.  Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropic shape memory alloys , 2008 .

[4]  Bertrand Wattrisse,et al.  Fields of stored energy associated with localized necking of steel , 2009 .

[5]  L. Contardo,et al.  PSEUDOELASTIC BEHAVIOUR AND TWO WAY MEMORY EFFECT IN Cu-Zn-Al ALLOYS , 1991 .

[6]  C. M. Wayman,et al.  Superelasticity effects and stress-induced martensitic transformations in CuAlNi alloys , 1976 .

[7]  Ingo Müller,et al.  On the size of the hysteresis in pseudoelasticity , 1989 .

[8]  F. D. Fischer,et al.  Modelling the mechanical behavior of shape memory alloys under variant coalescence , 1996 .

[9]  Laurent Orgéas,et al.  Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression , 1998 .

[10]  K. Tanaka,et al.  Thermodynamic models of pseudoelastic behaviour of shape memory alloys , 1992 .

[11]  J. Moreau,et al.  Sur les lois de frottement, de plasticité et de viscosité , 1970 .

[12]  Guojun Sun,et al.  The nonlinear relationship between transformation strain and applied stress for nitinol , 2003 .

[13]  Jean-Yves Gauthier Modélisation des Alliages à Mémoire de Forme Magnétiques pour la conversion d'énergie dans les actionneurs et leur commande. , 2007 .

[14]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[15]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[16]  C. Lexcellent,et al.  Thermodynamics of isotropic pseudoelasticity in shape memory alloys , 1998 .

[17]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[18]  A. Saxena,et al.  Nickel-titanium instruments : applications in endodontics , 1995 .

[19]  Minoru Taya,et al.  Model calculation of 3D-phase transformation diagram of ferromagnetic shape memory alloys , 2006 .

[20]  Richard D. James,et al.  Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy , 1996 .

[21]  Kaushik Bhattacharya,et al.  A model problem concerning recoverable strains of shape-memory polycrystals , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Stefan Seelecke,et al.  Simulation and control of SMA actuators , 1999, Smart Structures.

[23]  Inderjit Chopra,et al.  A quasi-static model for NiMnGa magnetic shape memory alloy , 2007 .

[24]  G. Ravichandran,et al.  Stress-induced martensitic phase transformation in thin sheets of Nitinol , 2007 .

[25]  Dimitris C. Lagoudas,et al.  On the Correspondence between Micromechanical Models for Isothermal Pseudoelastic Response of Shape Memory Alloys and the Preisach Model for Hysteresis , 1997 .

[26]  A. A. Likhachev,et al.  Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy , 2000 .

[27]  K. Shimizu,et al.  Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite , 1969 .

[28]  E. Patoor,et al.  A simplified micromechanical constitutive law adapted to the design of shape memory applications by finite element methods , 2008 .

[29]  V. A. Chernenko,et al.  A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity) , 2003 .

[30]  A. A. Likhachev,et al.  Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase , 2002 .

[31]  Wei Min Huang,et al.  “Yield” surfaces of shape memory alloys and their applications , 1999 .

[32]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[33]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[34]  Yinong Liu,et al.  Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi , 2000 .

[35]  C. Lebreton Alliages à mémoire de forme de type nickel titane - Fiches matériaux , 2004, Étude et propriétés des métaux.

[36]  Outi Söderberg,et al.  Magnetic domain evolution with applied field in a Ni–Mn–Ga magnetic shape memory alloy , 2006 .

[37]  M. Achenbach,et al.  SIMULATION OF MATERIAL BEHAVIOR OF ALLOYS WITH SHAPE MEMORY , 1985 .

[38]  Weijia Tang,et al.  Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys , 1997 .

[39]  Ove A. Peters,et al.  Mechanical preparation of root canals: shaping goals, techniques and means , 2005 .

[40]  C. Lexcellent,et al.  Analytical prediction of the phase transformation onset zone at a crack tip of a shape memory alloy exhibiting asymmetry between tension and compression , 2011 .

[41]  J. Aboudi,et al.  On the transformation toughening of a crack along an interface between a shape memory alloy and an isotropic medium , 2008 .

[42]  L. Hirsinger,et al.  From crystallographic properties to macroscopic detwinning strain and magnetisation of Ni-Mn-Ga magnetic shape memory alloys , 2004 .

[43]  Hysteretic Behavior of Ferroelasticity of NiTi in Shear , 2006 .

[44]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[45]  T. Read,et al.  Plastic Deformation and Diffusionless Phase Changes in Metals — the Gold-Cadmium Beta Phase , 1951 .

[46]  Marcel Berveiller,et al.  Potentiel pseudoelastique et plasticite de transformation martensitique dans les monoet polycristaux metalliques , 1987 .

[47]  V. V. Kokorin,et al.  Large magnetic‐field‐induced strains in Ni2MnGa single crystals , 1996 .

[48]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[49]  Xavier Balandraud,et al.  Stressed microstructures in thermally induced M9R–M18R martensites , 2007 .

[50]  K. Hane Bulk and thin film microstructures in untwinned martensites , 1999 .

[51]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[52]  Petr Šittner,et al.  Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals , 2000 .

[53]  H. Maier,et al.  Stress-induced martensitic phase transformations in polycrystalline CuZnAl shape memory alloys under different stress states , 1998 .

[54]  Gregory P. Carman,et al.  Composition and annealing effects on the mechanical properties of superelastic thin film nickel titanium , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[55]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[56]  Sung Yi,et al.  Fracture toughening mechanism of shape memory alloys due to martensite transformation , 2000 .

[57]  V. Buchelnikov,et al.  The kinetics of phase transformations in ferromagnetic shape memory alloys Ni-Mn-Ga , 2003 .

[58]  D. Perreux,et al.  Theoretical and Experimental Study of a Smart Hinge-Beam Based on Shape Memory Alloy Wire Actuators , 1999, J. Intell. Robotic Syst..

[59]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[60]  Otto T. Bruhns,et al.  Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes , 2009 .

[61]  Masataka Tokuda,et al.  Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces , 1995 .

[62]  M. Grédiac,et al.  Almost compatible microstructures in shape memory alloys , 2010 .

[63]  A. A. Rudenko,et al.  Stress-strain behaviour of Ni-Mn-Ga alloys: experiment and modelling , 2004 .

[64]  C. M. Wayman,et al.  Introduction to the crystallography of martensitic transformations , 1964 .

[65]  Joël Abadie,et al.  Modeling of a new SMA micro-actuator for active endoscopy applications , 2009 .

[66]  K. Tanaka,et al.  A thermomechanical description of materials with internal variables in the process of phase transitions , 1982 .

[67]  A. Schlömerkemper,et al.  Comparison of several models for the determination of the phase transformation yield surface in shape-memory alloys with experimental data , 2007 .

[68]  G. Eggeler,et al.  On the formation of martensite in front of cracks in pseudoelastic shape memory alloys , 2005 .

[69]  Christian Lexcellent,et al.  Modelling detwinning of martensite platelets under magnetic and (or) stress actions on Ni-Mn-Ga alloys , 2003 .

[70]  Christian Lexcellent,et al.  Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape memory alloys , 2002 .

[71]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[72]  A. A. Likhachev,et al.  Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni-Mn-Ga , 2004 .

[73]  J. Christian,et al.  Experiments on the martensitic transformation in single crystals of indium-thallium alloys , 1954 .

[74]  Samuel M. Allen,et al.  Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials (invited) , 2000 .

[75]  J. Christian,et al.  Crystallography of deformation by twin boundary movements in indium-thallium alloys , 1954 .

[76]  M. Achenbach A model for an alloy with shape memory , 1989 .

[77]  D. Davino,et al.  Simulation of field effects on the mechanical hysteresis of Terfenol rods and magnetic shape memory materials using vector Preisach-type models , 2006 .

[78]  C. Lexcellent,et al.  Yield Criteria for Shape Memory Materials: Convexity Conditions and Surface Transport , 2010 .

[79]  Samuel M. Allen,et al.  Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys , 2000, Smart Structures.

[80]  Jordi Ortín,et al.  Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal , 1992 .

[81]  M. Fremond,et al.  Matériaux à mémoire de forme , 1987 .

[82]  Hisashi Naito,et al.  Inner loops of pseudoelastic hysteresis of shape memory alloys: Preisach approach , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[83]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[84]  Oleg Heczko,et al.  Determination of ordinary magnetostriction in Ni–Mn–Ga magnetic shape memory alloy , 2005 .

[85]  N. Glavatska,et al.  Statistical model of magnetostrain effect in martensite , 2003 .

[86]  D. McDowell,et al.  Transformation Surfaces of a Textured Pseudoelastic Polycrystalline Cu-Zn-Al Shape Memory Alloy , 2002 .

[87]  Shuichi Miyazaki,et al.  Mechanism of the As temperature increase by pre-deformation in thermoelastic alloys , 1993 .

[88]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[89]  V. Novák,et al.  Acoustic emission of Ni–Mn–Ga magnetic shape memory alloy in different straining modes , 2004 .

[90]  J. Christian,et al.  Martensitic transformations in titanium-tantalum alloys , 1972 .

[91]  C. Lexcellent,et al.  RL-models of pseudoelasticity and their specification for some shape memory solids , 1994 .

[92]  Y. Chemisky,et al.  Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation , 2011 .

[93]  K. Wu,et al.  Magnetic properties of the premartensitic transition in Ni 2 MnGa alloys , 1998 .

[94]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[95]  Christian Lexcellent,et al.  Relation between the martensite volume fraction and the equivalent transformation strain in shape memory alloys , 2006 .

[97]  P. Papadopoulos,et al.  An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading , 2003 .

[98]  L. Hirsinger,et al.  Stress-induced phase transformations in Ni–Mn–Ga alloys: experiments and modelling , 2004 .

[99]  Wael Zaki,et al.  A three-dimensional model of the thermomechanical behavior of shape memory alloys , 2007 .

[100]  Wang Zhi-gang A CONSTITUTIVE MODEL FOR SHAPE MEMORY ALLOYS , 1989 .

[101]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[102]  A. Modinos Thermodynamics and Statistical Mechanics , 2014 .

[103]  Chengbao Jiang,et al.  Superhigh strains by variant reorientation in the nonmodulated ferromagnetic NiMnGa alloys , 2002 .

[104]  Shuichi Miyazaki,et al.  Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires , 1999 .

[105]  R. Lathe Phd by thesis , 1988, Nature.

[106]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[107]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[108]  Jordan E. Massad,et al.  A Domain Wall Model for Hysteresis in Ferroelastic Materials , 2003 .

[109]  M. Berveiller,et al.  Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys , 1995 .

[110]  Christian Lexcellent,et al.  Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams , 2001 .

[111]  C. Lexcellent,et al.  Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy , 1997 .

[112]  T. Roubíček Models of Microstructure Evolution in Shape Memory Alloys , 2004 .

[113]  D. H. Everett,et al.  A general approach to hysteresis , 1952 .

[114]  C Lexcellent,et al.  Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling , 2002 .

[115]  O. Bruhns,et al.  On the viscous and strain rate dependent behavior of polycrystalline NiTi , 2008 .

[116]  Outi Söderberg,et al.  ESOMAT 2009 - 8th European Symposium on Martensitic Transformations , 2009 .

[117]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[118]  C. Lexcellent,et al.  Determination and transport of phase transformation yield surfaces for shape memory alloys , 2010 .

[119]  C. Lexcellent,et al.  Micromechanical modelling of a CuAlNi shape memory alloy behaviour , 2004 .

[120]  Oleg Heczko,et al.  Temperature dependence and temperature limits of magnetic shape memory effect , 2003 .

[121]  L. Hirsinger,et al.  Microstructural, mechanical and magnetic properties of shape memory alloy Ni55Mn23Ga22 thin films deposited by radio-frequency magnetron sputtering , 2009 .

[122]  S. Hannula,et al.  Temperature dependence of reversible field-induced strain in Ni¿Mn¿Ga single crystal , 2006 .

[123]  Akira Ishida,et al.  Shape memory characteristics of sputter-deposited Ti-Ni thin films , 1994 .

[124]  Peter Parashos,et al.  Rotary NiTi instrument fracture and its consequences. , 2006, Journal of endodontics.

[125]  Christian Lexcellent,et al.  SMA structures computations , 2007 .

[126]  Jordi Ortín PARTIAL HYSTERESIS CYCLES IN SHAPE-MEMORY ALLOYS : EXPERIMENTS AND MODELLING , 1991 .

[127]  P. Blanc,et al.  Processus de réorientation des variantes de martensite dans un monocristal Cu Al Ni , 2003 .

[128]  T. Shield Orientation dependence of the pseudoelastic behavior of single crystals of CuAlNi in tension , 1995 .

[129]  G. Ravichandran,et al.  An experimental investigation of crack initiation in thin sheets of nitinol , 2007 .

[130]  Stefan Seelecke,et al.  Modeling the dynamic behavior of shape memory alloys , 2002 .

[131]  Etienne Patoor,et al.  Macroscopic constitutive law of shape memory alloy thermomechanical behaviour. Application to structure computation by FEM , 2006 .

[132]  K. Shimizu,et al.  Crystal structure and internal defects of equiatomic TiNi martensite , 1971 .

[133]  J. Pons,et al.  Stress-strain – Temperature behaviour for martensitic transformation in Ni-Mn-Ga single crystal compressed along $ $ and $ $ axes , 2003 .

[134]  Stanisław Stupkiewicz,et al.  Modelling of laminated microstructures in stress-induced martensitic transformations , 2002 .

[135]  Man Wong,et al.  Frequency response of TiNi shape memory alloy thin film micro-actuators , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[136]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[137]  C. Lexcellent,et al.  Internal loops in pseudoelastic behaviour of Ti-Ni shape memory alloys: Experiment and modelling , 1995 .

[138]  A. A. Likhachev,et al.  Quantitative Model of Large Magnetostrain Effect in Ferromagnetic Shape Memory Alloys , 2000 .

[139]  Hanh-Middi Tran Création d'états de précontrainte dans des composants en béton par alliages à mémoire de forme : approche expérimentale et modélisation , 2012 .

[140]  K. Roberts,et al.  Thesis , 2002 .

[141]  Yinong Liu,et al.  Hysteretic behaviour of a Cu-Zn-Al single crystal during superelastic shear deformation , 2004 .

[142]  P. Vacher,et al.  ABOUT THE TRANSFORMATION PHASE ZONES OF SHAPE MEMORY ALLOYS' FRACTURE TESTS ON SINGLE EDGE-CRACKED SPECIMEN , 2012 .

[143]  Anne Maynadier,et al.  Surfaces seuil de début de transformation : modèle cristallin pour un alliage à mémoire de forme , 2011 .

[144]  P. Chu,et al.  Corrosion behavior of DLC-coated NiTi alloy in the presence of serum proteins , 2010 .

[145]  Arnaud Hubert,et al.  Magneto-thermo-mechanical modeling of a Magnetic Shape Memory Alloy Ni-Mn-Ga single crystal , 2011 .

[146]  C. Lexcellent,et al.  Phase transformation yield surface determination for some shape memory alloys , 2004 .

[147]  Arnaud Hubert,et al.  Modeling Rearrangement Process of Martensite Platelets in a Magnetic Shape Memory Alloy Ni2MnGa Single Crystal under Magnetic Field and (or) Stress Action , 2007 .

[148]  E. Patoor,et al.  Calculation of Pseudoelastic Elements Using a Non-Symmetrical Thermomechanical Transformation Criterion and Associated Rule , 1998 .

[149]  Etienne Patoor,et al.  Constitutive equations for polycrystalline thermoelastic shape memory alloys.: Part I. Intragranular interactions and behavior of the grain , 1999 .

[150]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[151]  K. Tanaka,et al.  Deformation behaviour of tini shape memory alloy undergoing R-phase reorientation in torsion-tension (compression) tests , 1999 .

[152]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[153]  L. Bocher,et al.  Experimental study of pseudoelastic behaviour of a Cu Zn AI polycrystalline shape memory alloy under tension-torsion proportional and non-proportional loading tests , 1996 .

[154]  Christian Lexcellent,et al.  About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions , 2006 .

[155]  C. M. Wayman,et al.  Crystallographic similarities in shape memory martensites , 1979 .

[156]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[157]  S. Miyazaki,et al.  Thermodynamic modeling of the recovery strains of sputter-deposited shape memory alloys Ti–Ni and Ti–Ni–Cu thin films , 2000 .

[158]  A. Ziółkowski,et al.  Thermodynamical model of reversible R-phase transformation in TiNi shape memory alloy , 1994 .

[159]  A. L. Roitburd,et al.  Martensitic Transformation as a Typical Phase Transformation in Solids , 1978 .

[160]  H. Laurent,et al.  Asynchronous interface between a finite element commercial software ABAQUS and an academic research code HEREZH++ , 2008, Adv. Eng. Softw..

[161]  G. Kostorz,et al.  Large cyclic deformation of a Ni-Mn-Ga shape memory alloy induced by magnetic fields , 2002 .

[162]  T. Shield,et al.  Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys , 1999 .

[163]  Jordan E. Massad,et al.  A homogenized free energy model for hysteresis in thin-film shape memory alloys , 2005 .

[164]  Dimitris C. Lagoudas,et al.  Adaptive Hysteresis Model for Model Reference Control with Actuator Hysteresis , 2000 .

[165]  Christian Lexcellent,et al.  Experimental Study and Modeling of a TiNi Shape Memory Alloy Wire Actuator , 1997 .

[166]  Yongzhong Huo,et al.  A mathematical model for the hysteresis in shape memory alloys , 1989 .

[167]  V. V. Kokorin,et al.  Ferromagnetic shape memory in the NiMnGa system , 1999 .

[168]  Ralph C. Smith Smart Material Systems , 2005 .

[169]  Shuichi Miyazaki,et al.  Microactuators Using R-phase Transformation of Sputter-deposited Ti-47.3Ni Shape Memory Alloy Thin Films , 2006 .

[170]  Samuel M. Allen,et al.  Giant magnetic-field-induced strain in Ni-Mn-Ga crystals : experimental results and modeling , 2001 .

[171]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[172]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[173]  M. Boubakar,et al.  On the thermomechanical modelling of shape memory alloys , 2000 .

[174]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[175]  F. Falk,et al.  One-dimensional model of shape memory alloys , 1983 .

[176]  Hisaaki Tobushi,et al.  Influence of strain rate on superelastic properties of TiNi shape memory alloy , 1998 .

[177]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[178]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[179]  Kaushik Bhattacharya,et al.  A micromechanics-inspired constitutive model for shape-memory alloys , 2007 .

[180]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[181]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[182]  S. J. Murray,et al.  Model for discontinuous actuation of ferromagnetic shape memory alloy under stress , 2001 .

[183]  Richard D. James,et al.  Magnetostriction of martensite , 1998 .

[184]  T. Nam,et al.  Applications of Ti–Ni alloys for secondary batteries , 2008 .

[185]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[186]  C. Lexcellent,et al.  Rice Local Phase Angle Study for a Delamination Problem Between a Shape Memory Alloy and an Elastic Material , 2012 .

[187]  André Chrysochoos,et al.  An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .

[188]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[189]  Samuel M. Allen,et al.  Crystal structure and transformation behavior of Ni–Mn–Ga martensites , 2006 .

[190]  Shigenori Kobayashi,et al.  Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys , 1986 .

[191]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[192]  S. Calloch,et al.  Multiaxial Shape Memory Effect and Superelasticity , 2009 .

[193]  Antonio DeSimone,et al.  A constrained theory of magnetoelasticity , 2002 .

[194]  Kari Ullakko,et al.  Effect of temperature on magnetic properties of Ni-Mn-Ga magnetic shape memory (MSM) alloys , 2001 .