Verified Bounds for Least Squares Problems and Underdetermined Linear Systems

New algorithms are presented for computing verified error bounds for least squares problems and underdetermined linear systems. In contrast to previous approaches the new methods do not rely on normal equations and are applicable to sparse matrices. Computational results demonstrate that the new methods are faster than existing ones.

[1]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[2]  Siegfried M. Rump Error estimation of floating-point summation and dot product , 2012 .

[3]  Siegfried M. Rump,et al.  Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse , 2011 .

[4]  Rinker Hall Tuesdays THE UNIVERSITY OF FLORIDA. , 1905, Science.

[5]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[6]  Jiri Rohn,et al.  A Handbook of Results on Interval Linear Problems , 2005 .

[7]  James Demmely,et al.  A Reference Implementation for Extended and Mixed Precision Blas , 2007 .

[8]  James Demmel,et al.  Accurate and Efficient Floating Point Summation , 2003, SIAM J. Sci. Comput..

[9]  A. Neumaier Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen , 1974 .

[10]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..

[11]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[12]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[13]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[16]  Vincent Lefèvre,et al.  On the Computation of Correctly-Rounded Sums , 2009, 2009 19th IEEE Symposium on Computer Arithmetic.

[17]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[18]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[19]  Shinya Miyajima Fast enclosure for solutions in underdetermined systems , 2010, J. Comput. Appl. Math..

[20]  Michael A. Malcolm,et al.  On accurate floating-point summation , 1971, CACM.