Atomic level architecture of group I introns revealed.

Twenty-two years after their discovery as ribozymes, the self-splicing group I introns are finally disclosing their architecture at the atomic level. The crystal structures of three group I introns solved at moderately high resolution (3.1-3.8A) reveal a remarkably conserved catalytic core bound to the metal ions required for activity. The structure of the core is stabilized by an intron-specific set of long-range interactions that involves peripheral elements. Group I intron structures thus provide much awaited and extremely valuable snapshots of how these ribozymes coordinate substrate binding and catalysis.

[1]  Tao Pan,et al.  Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. , 2005, Journal of molecular biology.

[2]  Tan Inoue,et al.  Minimal catalytic domain of a group I self-splicing intron RNA , 2000, Nature Structural Biology.

[3]  E Westhof,et al.  New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. , 1996, Chemistry & biology.

[4]  S. Woodson,et al.  Structure and assembly of group I introns. , 2005, Current opinion in structural biology.

[5]  J. Szostak,et al.  Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns , 1990, Nature.

[6]  E. Westhof,et al.  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[7]  E. Westhof,et al.  Monitoring intermediate folding states of the td group I intron in vivo , 2002, The EMBO journal.

[8]  B. Sjöberg,et al.  Metal ion interaction with cosubstrate in self-splicing of group I introns. , 1997, Nucleic acids research.

[9]  T. Tarasow,et al.  RNA-catalysed carbon–carbon bond formation , 1997, Nature.

[10]  N. Pace,et al.  Crystal structure of a bacterial ribonuclease P RNA. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Dujon,et al.  Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. , 1982, Biochimie.

[12]  L. B. Weinstein,et al.  A second catalytic metal ion in a group I ribozyme , 1997, Nature.

[13]  T. Cech,et al.  A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self‐splicing. , 1989, The EMBO journal.

[14]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Caruthers,et al.  Metal ion catalysis in the Tetrahymena ribozyme reaction , 1993, Nature.

[16]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[17]  S. Woodson Metal ions and RNA folding: a highly charged topic with a dynamic future. , 2005, Current opinion in chemical biology.

[18]  Daniel Herschlag,et al.  Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. , 1999, Biochemistry.

[19]  A. T. Perrotta,et al.  Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. , 1991, Science.

[20]  Kevin G. Jones,et al.  A Group I Intron in the Nuclear Small Subunit rRNA Gene of Cryptendoxyla hypophloia, an Ascomycetous Fungus: Evidence for a New Major Class of Group I Introns , 1999, Journal of Molecular Evolution.

[21]  T. Cech,et al.  A preorganized active site in the crystal structure of the Tetrahymena ribozyme. , 1998, Science.

[22]  T. Cech,et al.  Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. , 1997, Journal of molecular biology.

[23]  Ruth Nussinov,et al.  ARTS: alignment of RNA tertiary structures , 2005, ECCB/JBI.

[24]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[25]  P. Zarrinkar,et al.  Kinetic intermediates in RNA folding. , 1994, Science.

[26]  D. Herschlag,et al.  Three metal ions at the active site of the Tetrahymena group I ribozyme. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Uebayasi,et al.  Theoretical analyses on the role of Mg2+ ions in ribozyme reactions , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  Gerard J Kleywegt,et al.  Déjà vu all over again: finding and analyzing protein structure similarities. , 2004, Structure.

[29]  R. Montange,et al.  Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine , 2004, Nature.

[30]  S. Strobel,et al.  Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing , 2005, Science.

[31]  Lakshmi V. Madabusi,et al.  A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface. , 2005, Molecular cell.

[32]  Fritz Eckstein,et al.  Nucleic acids and molecular biology , 1987 .

[33]  K. Weeks,et al.  Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase , 2005, Nature Structural &Molecular Biology.

[34]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[35]  Scott A Strobel,et al.  Crystal structure of a group I intron splicing intermediate. , 2004, RNA.

[36]  D. Bartel,et al.  Isolation of new ribozymes from a large pool of random sequences [see comment]. , 1993, Science.

[37]  James L. Hougland,et al.  Functional Identification of Catalytic Metal Ion Binding Sites within RNA , 2005, PLoS biology.

[38]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[39]  T. Cech Self-splicing of group I introns. , 1990, Annual review of biochemistry.

[40]  Eric Westhof,et al.  Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Westhof,et al.  The Structure of Group I Ribozymes , 1996 .

[42]  L. Grivell,et al.  Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro , 1986, Cell.

[43]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[44]  E Westhof,et al.  The environment of two metal ions surrounding the splice site of a group I intron. , 1996, The EMBO journal.

[45]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.

[46]  S. Woodson,et al.  Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. , 1998, Journal of molecular biology.

[47]  T. Cech,et al.  Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. , 2004, Molecular cell.

[48]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[49]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[50]  T. Cech,et al.  Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site , 1995, Science.

[51]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[52]  Debashish Bhattacharya,et al.  The natural history of group I introns. , 2005, Trends in genetics : TIG.

[53]  E. Westhof,et al.  A Tyrosyl-tRNA Synthetase Recognizes a Conserved tRNA-like Structural Motif in the Group I Intron Catalytic Core , 1996, Cell.

[54]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[55]  T. Cech,et al.  Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA--solvent interactions. , 2001, Structure.

[56]  K. Weeks,et al.  Protein-dependent transition states for ribonucleoprotein assembly. , 2001, Journal of molecular biology.

[57]  T. Cech,et al.  RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. , 1992, The Journal of biological chemistry.

[58]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[59]  S. Strobel,et al.  Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site , 1998, Nature Structural Biology.

[60]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[61]  Tan Inoue,et al.  Modular engineering of a Group I intron ribozyme. , 2002, Nucleic acids research.

[62]  L. Kirsebom RNase P RNA-mediated catalysis. , 2001, Biochemical Society transactions.

[63]  Jennifer A. Doudna,et al.  The chemical repertoire of natural ribozymes , 2002, Nature.

[64]  T. Cech,et al.  Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. , 1996, RNA.

[65]  R. Waring,et al.  Making ends meet: a model for RNA splicing in fungal mitochondria , 1982, Nature.

[66]  K. Taira,et al.  Gene discovery by ribozyme and siRNA libraries , 2005, Nature Reviews Molecular Cell Biology.

[67]  François Michel,et al.  The guanosine binding site of the Tetrahymena ribozyme , 1989, Nature.

[68]  James R. Williamson,et al.  The catalytic diversity of RNAs , 2005, Nature Reviews Molecular Cell Biology.

[69]  R. Green,et al.  In vitro genetic analysis of the Tetrahymena self-splicing intron , 1990, Nature.

[70]  Eric Westhof,et al.  Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure , 2005, Bioinform..

[71]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[72]  Mu Xiao,et al.  A peripheral element assembles the compact core structure essential for group I intron self-splicing , 2005, Nucleic acids research.

[73]  S. Strobel,et al.  A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. , 1999, Chemistry & biology.

[74]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[75]  M. Yarus,et al.  An axial binding site in the Tetrahymena precursor RNA. , 1991, Journal of molecular biology.

[76]  P. Perlman,et al.  A self-splicing RNA excises an intron lariat , 1986, Cell.

[77]  T. Inoue,et al.  P5abc of the Tetrahymena ribozyme consists of three functionally independent elements. , 1998, RNA.

[78]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[79]  R. Waring,et al.  Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing--a review. , 1984, Gene.

[80]  Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. , 2004, Journal of molecular biology.

[81]  A. S. Krasilnikov,et al.  Basis for Structural Diversity in Homologous RNAs , 2004, Science.

[82]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[83]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[84]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[85]  T. Cech,et al.  Ribozyme-mediated repair of defective mRNA by targeted trans-splicing , 1994, Nature.

[86]  Feng Guo,et al.  Evolution of Tetrahymena ribozyme mutants with increased structural stability , 2002, Nature Structural Biology.