Using magnetic resonance imaging to assess visual deficits: a review

Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post‐mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non‐invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia.

[1]  Frans W Cornelissen,et al.  Preserved retinotopic brain connectivity in macular degeneration , 2016, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[2]  Antony B Morland,et al.  Organization of the Central Visual Pathways Following Field Defects Arising from Congenital, Inherited, and Acquired Eye Disease. , 2015, Annual review of vision science.

[3]  B. Thompson,et al.  Functional effects of unilateral open-angle glaucoma on the primary and extrastriate visual cortex. , 2015, Journal of vision.

[4]  Ione Fine,et al.  Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience , 2015, The Journal of Neuroscience.

[5]  Franco Pestilli,et al.  Altered white matter in early visual pathways of humans with amblyopia , 2015, Vision Research.

[6]  A. Norcia,et al.  The Structural Properties of Major White Matter Tracts in Strabismic Amblyopia. , 2015, Investigative ophthalmology & visual science.

[7]  Ione Fine,et al.  Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia. , 2015, Journal of neurophysiology.

[8]  B. Wilhelm,et al.  Subretinal Visual Implant Alpha IMS – Clinical trial interim report , 2015, Vision Research.

[9]  Uzay E. Emir,et al.  Short-Term Monocular Deprivation Alters GABA in the Adult Human Visual Cortex , 2015, Current Biology.

[10]  A. Caramazza,et al.  Functional connectivity of visual cortex in the blind follows retinotopic organization principles , 2015, Brain : a journal of neurology.

[11]  H. Bridge,et al.  Subcortical functional reorganization due to early blindness. , 2015, Journal of neurophysiology.

[12]  Serge O. Dumoulin,et al.  Congenital visual pathway abnormalities: a window onto cortical stability and plasticity , 2015, Trends in Neurosciences.

[13]  S. Engel,et al.  Plasticity, and Its Limits, in Adult Human Primary Visual Cortex. , 2015, Multisensory research.

[14]  R. Edden,et al.  Gannet: A batch‐processing tool for the quantitative analysis of gamma‐aminobutyric acid–edited MR spectroscopy spectra , 2014, Journal of magnetic resonance imaging : JMRI.

[15]  Oliver Speck,et al.  Impact of chiasma opticum malformations on the organization of the human ventral visual cortex , 2014, Human brain mapping.

[16]  Kathryn Trinkaus,et al.  Optic Nerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients and Controls , 2014, Journal of glaucoma.

[17]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Age-Related Macular Degeneration Depends on Foveal Loss , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[18]  H. Bridge,et al.  Changes in brain morphology in albinism reflect reduced visual acuity , 2014, Cortex.

[19]  F. Cornelissen,et al.  Morphometric analyses of the visual pathways in macular degeneration , 2014, Cortex.

[20]  Yufei Huang,et al.  Alteration of Fractional Anisotropy and Mean Diffusivity in Glaucoma: Novel Results of a Meta-Analysis of Diffusion Tensor Imaging Studies , 2014, PloS one.

[21]  J. Weiland,et al.  Retinal Prosthesis , 2014, IEEE Transactions on Biomedical Engineering.

[22]  Amir Amedi,et al.  Visual Cortex Extrastriate Body-Selective Area Activation in Congenitally Blind People “Seeing” by Using Sounds , 2014, Current Biology.

[23]  M. Goldacre,et al.  Associations between age-related macular degeneration, Alzheimer disease, and dementia: record linkage study of hospital admissions. , 2014, JAMA ophthalmology.

[24]  L. da Cruz,et al.  Neural retinal regeneration with pluripotent stem cells. , 2014, Developments in ophthalmology.

[25]  A. Cowey,et al.  Early Auditory Processing in Area V5/MT+ of the Congenitally Blind Brain , 2013, The Journal of Neuroscience.

[26]  H. Petropoulos,et al.  Neurochemical changes within human early blind occipital cortex , 2013, Neuroscience.

[27]  Dongrong Xu,et al.  Resting‐state functional MRI: Functional connectivity analysis of the visual cortex in primary open‐angle glaucoma patients , 2013, Human brain mapping.

[28]  P. Voss Sensitive and critical periods in visual sensory deprivation , 2013, Front. Psychol..

[29]  Joachim Hornegger,et al.  Glaucoma classification based on visual pathway analysis using diffusion tensor imaging. , 2013, Magnetic resonance imaging.

[30]  Yan Zhang,et al.  Proton Magnetic Resonance Spectroscopy (1H-MRS) Reveals Geniculocalcarine and Striate Area Degeneration in Primary Glaucoma , 2013, PloS one.

[31]  Song Lai,et al.  Evidence for widespread structural brain changes in glaucoma: a preliminary voxel-based MRI study. , 2013, Investigative ophthalmology & visual science.

[32]  P. Rombaux,et al.  Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind , 2013, PloS one.

[33]  Mark W. Greenlee,et al.  Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration , 2013, Front. Psychol..

[34]  Daniel P. Spiegel,et al.  Anodal Transcranial Direct Current Stimulation Transiently Improves Contrast Sensitivity and Normalizes Visual Cortex Activation in Individuals With Amblyopia , 2013, Neurorehabilitation and neural repair.

[35]  Jian Wang,et al.  Reduced white matter integrity in primary open-angle glaucoma: a DTI study using tract-based spatial statistics. , 2013, Journal of neuroradiology. Journal de neuroradiologie.

[36]  M. Kiyosawa,et al.  Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients , 2013, Japanese Journal of Ophthalmology.

[37]  Ewout H. Meijer,et al.  Detecting Concealed Information from Groups Using a Dynamic Questioning Approach: Simultaneous Skin Conductance Measurement and Immediate Feedback , 2013, Front. Psychology.

[38]  J. Sivak The aging eye: common degenerative mechanisms between the Alzheimer's brain and retinal disease. , 2013, Investigative ophthalmology & visual science.

[39]  Jie Tian,et al.  Quantitative 3-T diffusion tensor imaging in detecting optic nerve degeneration in patients with glaucoma: association with retinal nerve fiber layer thickness and clinical severity , 2013, Neuroradiology.

[40]  Chun-quan Cai,et al.  Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study , 2013, British Journal of Ophthalmology.

[41]  Q. Gong,et al.  Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. , 2013, Investigative ophthalmology & visual science.

[42]  S. Graham,et al.  New magnetic resonance imaging techniques identify cortical changes in glaucoma , 2013, Clinical & experimental ophthalmology.

[43]  F. Lin,et al.  Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma , 2013, Clinical & experimental ophthalmology.

[44]  Brian Barton,et al.  Visual Field Map Organization in Human Visual Cortex , 2012 .

[45]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[46]  Jian Wang,et al.  Voxel-based Morphometry of the Visual-related Cortex in Primary Open Angle Glaucoma , 2012, Current eye research.

[47]  M. McKibbin,et al.  Visual impairment certification secondary to ARMD in Leeds, 2005–2010: is the incidence falling? , 2012, Eye.

[48]  F. Garaci,et al.  Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. , 2012, Investigative ophthalmology & visual science.

[49]  J. Jonas,et al.  Anterior visual pathway assessment by magnetic resonance imaging in normal‐pressure glaucoma , 2012, Acta ophthalmologica.

[50]  A. Alkan,et al.  Evaluation of corpus geniculatum laterale and vitreous fluid by magnetic resonance spectroscopy in patients with glaucoma; a preliminary study , 2012, Eye.

[51]  Nicola Filippini,et al.  Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex. , 2012, Brain : a journal of neurology.

[52]  J. Goldberg,et al.  Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. , 2012, Ophthalmology.

[53]  T. Struffert,et al.  Changes of Radial Diffusivity and Fractional Anisotopy in the Optic Nerve and Optic Radiation of Glaucoma Patients , 2012, TheScientificWorldJournal.

[54]  Robert F. Hess,et al.  Abnormal cortical processing of pattern motion in amblyopia: Evidence from fMRI , 2012, NeuroImage.

[55]  N. Esiobu,et al.  Co-Cultures of Pseudomonas aeruginosa and Roseobacter denitrificans Reveal Shifts in Gene Expression Levels Compared to Solo Cultures , 2012, TheScientificWorldJournal.

[56]  G. Plant,et al.  The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. , 2012, Brain : a journal of neurology.

[57]  M. Shahsuvaryan Pharmacological Neuroprotection in Blinding Eye Diseases , 2012 .

[58]  Z. Svatá,et al.  Changes in the Visual Cortex in Patients with High-Tension Glaucoma , 2012 .

[59]  Alan Cowey,et al.  Transneuronal retrograde degeneration of retinal ganglion cells and optic tract in hemianopic monkeys and humans. , 2011, Brain : a journal of neurology.

[60]  K. Ohno-Matsui Parallel findings in age-related macular degeneration and Alzheimer’s disease , 2011, Progress in Retinal and Eye Research.

[61]  M. Ptito,et al.  Neural correlates of olfactory processing in congenital blindness , 2011, Neuropsychologia.

[62]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[63]  Christine C. Boucard,et al.  Automated morphometry of the visual pathway in primary open-angle glaucoma. , 2011, Investigative ophthalmology & visual science.

[64]  H. Bridge,et al.  Imaging reveals optic tract degeneration in hemianopia. , 2011, Investigative ophthalmology & visual science.

[65]  Xingfeng Li,et al.  Effective connectivity anomalies in human amblyopia , 2011, NeuroImage.

[66]  G. Legge,et al.  Incomplete cortical reorganization in macular degeneration. , 2010, Investigative ophthalmology & visual science.

[67]  Daphne Bavelier,et al.  Removing Brakes on Adult Brain Plasticity: From Molecular to Behavioral Interventions , 2010, The Journal of Neuroscience.

[68]  Satoru Miyauchi,et al.  Task-dependent V1 responses in human retinitis pigmentosa. , 2010, Investigative ophthalmology & visual science.

[69]  Bo Wang,et al.  Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. , 2010, Investigative ophthalmology & visual science.

[70]  Serge O Dumoulin,et al.  Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. , 2010, Investigative ophthalmology & visual science.

[71]  Stephen M. Smith,et al.  Advances and Pitfalls in the Analysis and Interpretation of Resting-State FMRI Data , 2010, Front. Syst. Neurosci..

[72]  Paul M. Thompson,et al.  Brain structure changes visualized in early- and late-onset blind subjects , 2010, NeuroImage.

[73]  A. Flanders Optic Nerve and Optic Radiation Neurodegeneration in Patients with Glaucoma: In Vivo Analysis with 3-T Diffusion-Tensor MR Imaging , 2010 .

[74]  L. Merabet,et al.  Neural reorganization following sensory loss: the opportunity of change , 2010, Nature Reviews Neuroscience.

[75]  Krish D. Singh,et al.  Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex , 2009, The Journal of Neuroscience.

[76]  A. Cowey,et al.  Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex. , 2009, Brain : a journal of neurology.

[77]  Eduardo Fernández,et al.  Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects , 2009, NeuroImage.

[78]  D. Giaschi,et al.  Low- and high-level first-order random-dot kinematograms: Evidence from fMRI , 2009, Vision Research.

[79]  H. Kazui,et al.  Neuroimaging studies in patients with Charles Bonnet Syndrome , 2009, Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society.

[80]  Christine C. Boucard,et al.  Changes in cortical grey matter density associated with long-standing retinal visual field defects , 2009, Brain : a journal of neurology.

[81]  Daniel D. Dilks,et al.  Reorganization of Visual Processing in Macular Degeneration Is Not Specific to the “Preferred Retinal Locus” , 2009, The Journal of Neuroscience.

[82]  Robert F Hess,et al.  Deficient responses from the lateral geniculate nucleus in humans with amblyopia , 2009, The European journal of neuroscience.

[83]  Chunshui Yu,et al.  Abnormal diffusion of cerebral white matter in early blindness , 2009, Human brain mapping.

[84]  M. Law,et al.  Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. , 2009, Clinical radiology.

[85]  B. Wandell,et al.  V1 projection zone signals in human macular degeneration depend on task, not stimulus. , 2008, Cerebral cortex.

[86]  Dominic H. ffytche,et al.  The hodology of hallucinations , 2008, Cortex.

[87]  N. Gupta,et al.  Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging , 2008, British Journal of Ophthalmology.

[88]  Daniel D. Dilks,et al.  Reorganization of visual processing in macular degeneration: Replication and clues about the role of foveal loss , 2008, Vision Research.

[89]  Meng Li,et al.  Structural and functional deficits in human amblyopia , 2008, Neuroscience Letters.

[90]  A. Cowey,et al.  Investigating Developmental Plasticity in Human Anophthalmia , 2008 .

[91]  A. Morland,et al.  The fovea regulates symmetrical development of the visual cortex , 2008, The Journal of comparative neurology.

[92]  M. Ptito,et al.  Alterations of the visual pathways in congenital blindness , 2008, Experimental Brain Research.

[93]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[94]  Michael B Hoffmann,et al.  Identifying human albinism: a comparison of VEP and fMRI. , 2008, Investigative ophthalmology & visual science.

[95]  Neeru Gupta,et al.  Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. , 2008, Progress in brain research.

[96]  Kevin P. Moloney,et al.  Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. , 2008, Restorative neurology and neuroscience.

[97]  U. Noppeney The effects of visual deprivation on functional and structural organization of the human brain , 2007, Neuroscience & Biobehavioral Reviews.

[98]  N. Gupta,et al.  What changes can we expect in the brain of glaucoma patients? , 2007, Survey of ophthalmology.

[99]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[100]  J. Mendola,et al.  Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. , 2007, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[101]  G. Gong,et al.  Underdevelopment of optic radiation in children with amblyopia: a tractography study. , 2007, American journal of ophthalmology.

[102]  G. Gong,et al.  Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. , 2007, American journal of ophthalmology.

[103]  Richard V Abadi,et al.  Visual loss and visual hallucinations in patients with age-related macular degeneration (Charles Bonnet syndrome). , 2007, Investigative ophthalmology & visual science.

[104]  Jeroen van der Grond,et al.  Occipital Proton Magnetic Resonance Spectroscopy (1H-MRS) Reveals Normal Metabolite Concentrations in Retinal Visual Field Defects , 2007, PloS one.

[105]  Christopher Bowd,et al.  Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss , 2007, Progress in Retinal and Eye Research.

[106]  Michael B Hoffmann,et al.  Pigmentation predicts the shift in the line of decussation in humans with albinism , 2007, The European journal of neuroscience.

[107]  J. Haselgrove,et al.  Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. , 2006, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[108]  A. Snyder,et al.  Diffusion tensor imaging reveals white matter reorganization in early blind humans. , 2006, Cerebral cortex.

[109]  Talma Hendler,et al.  Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes , 2006, NeuroImage.

[110]  U. Bürgel,et al.  Diffusion tensor imaging in acquired blind humans , 2006, Neuroscience Letters.

[111]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[112]  Rainer Goebel,et al.  Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes , 2006, Vision Research.

[113]  Stephen J Anderson,et al.  Neuroimaging in Human Amblyopia , 2006, Strabismus.

[114]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[115]  R. Finnell,et al.  Epidemiologic characteristics of anophthalmia and bilateral microphthalmia among 2.5 million births in California, 1989–1997 , 2005, American journal of medical genetics. Part A.

[116]  Kenneth K Kwong,et al.  Voxel‐based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia , 2005, Human brain mapping.

[117]  G. Rogers,et al.  The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot study. , 2005, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[118]  N. Logothetis,et al.  Lack of long-term cortical reorganization after macaque retinal lesions , 2005, Nature.

[119]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[120]  Peter M. G. Munro,et al.  Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy , 2005, Gene Therapy.

[121]  G. Legge,et al.  Functional and cortical adaptations to central vision loss , 2005, Visual Neuroscience.

[122]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[123]  Takao K Hensch,et al.  Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. , 2005, Progress in brain research.

[124]  G. Grön,et al.  Monocular visual activation patterns in albinism as revealed by functional magnetic resonance imaging , 2004, Human brain mapping.

[125]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.

[126]  S Murray Sherman,et al.  Differences in projection patterns between large and small corticothalamic terminals , 2004, The Journal of comparative neurology.

[127]  K. Kashiwagi,et al.  Association of Magnetic Resonance Imaging of Anterior Optic Pathway with Glaucomatous Visual Field Damage and Optic Disc Cupping , 2004, Journal of glaucoma.

[128]  Suk-Tak Chan,et al.  Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans , 2004, NeuroImage.

[129]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[130]  T. Hendler,et al.  Area-Specific Amblyopic Effects in Human Occipitotemporal Object Representations , 2003, Neuron.

[131]  Shu-Wei Sun,et al.  Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia , 2003, NeuroImage.

[132]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[133]  Michael B Hoffmann,et al.  Organization of the Visual Cortex in Human Albinism , 2003, The Journal of Neuroscience.

[134]  J. Haselgrove,et al.  Decreased Activation of the Lateral Geniculate Nucleus in a Patient with Anisometropic Amblyopia Demonstrated by Functional Magnetic Resonance Imaging , 2003, Ophthalmologica.

[135]  P. Kaufman,et al.  Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma. , 2003, Investigative ophthalmology & visual science.

[136]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[137]  A. Y. Chow,et al.  Subretinal Artificial Silicon Retina Microchip Implantation in Retinitis Pigmentosa , 2003 .

[138]  Ho-Ling Liu,et al.  Functional MRI of amblyopia before and after levodopa , 2003, Neuroscience Letters.

[139]  Wolfgang Reith,et al.  Configuration of the optic chiasm in humans with albinism as revealed by magnetic resonance imaging. , 2003, Investigative ophthalmology & visual science.

[140]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[141]  Petra Schmalbrock,et al.  Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study. , 2002, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[142]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[143]  Herbert Jägle,et al.  Reorganization of human cortical maps caused by inherited photoreceptor abnormalities , 2002, Nature Neuroscience.

[144]  G E Holder,et al.  Abnormal visual projection in a human albino studied with functional magnetic resonance imaging and visual evoked potentials , 2002, Journal of neurology, neurosurgery, and psychiatry.

[145]  Ravi S. Menon,et al.  High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes , 2002, Strabismus.

[146]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[147]  Kyoung-Min Lee,et al.  Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging , 2001, The British journal of ophthalmology.

[148]  K. Chang,et al.  Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia , 2001, Neuroscience Research.

[149]  R F Hess,et al.  The cortical deficit in humans with strabismic amblyopia , 2001, The Journal of physiology.

[150]  B. Wandell,et al.  Abnormal retinotopic representations in human visual cortex revealed by fMRI. , 2001, Acta psychologica.

[151]  J. Flannery,et al.  Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. , 2000, Investigative ophthalmology & visual science.

[152]  D. Hunt,et al.  Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy , 2000, Nature Genetics.

[153]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[154]  Alan Cowey,et al.  Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey , 2000, Experimental Brain Research.

[155]  T. Parrish,et al.  Functional MR imaging. , 1999, Magnetic resonance imaging clinics of North America.

[156]  A. Cowey,et al.  Variance in transneuronal retrograde ganglion cell degeneration in monkeys after removal of striate cortex: effects of size of the cortical lesion , 1999, Vision Research.

[157]  R S Harwerth,et al.  Ganglion cell losses underlying visual field defects from experimental glaucoma. , 1999, Investigative ophthalmology & visual science.

[158]  R W Bowtell,et al.  Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[159]  R. Turner,et al.  Functional magnetic resonance imaging of the human brain: data acquisition and analysis , 1998, Experimental Brain Research.

[160]  M. Garwood,et al.  Simultaneous in vivo spectral editing and water suppression , 1998, NMR in biomedicine.

[161]  L. P. O'Keefe,et al.  Neuronal Correlates of Amblyopia in the Visual Cortex of Macaque Monkeys with Experimental Strabismus and Anisometropia , 1998, The Journal of Neuroscience.

[162]  T. Hirai,et al.  MR changes in the calcarine area resulting from retinal degeneration. , 1997, AJNR. American journal of neuroradiology.

[163]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[164]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[165]  J. Horton,et al.  Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia , 1996, Visual Neuroscience.

[166]  Jean Bennett,et al.  Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy , 1996, Nature Medicine.

[167]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[168]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[170]  G H Glover,et al.  Functional MR imaging. Capabilities and limitations. , 1995, Neuroimaging clinics of North America.

[171]  J. Lewin,et al.  Abnormal connectivity of the visual pathways in human albinos demonstrated by susceptibility‐sensitized MRI , 1994, Neurology.

[172]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[173]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[174]  M. Brodsky,et al.  Magnetic resonance imaging of the visual pathways in human albinos. , 1993, Journal of pediatric ophthalmology and strabismus.

[175]  R. Mattson,et al.  Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[176]  J. Horton,et al.  Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[177]  D D Clowes,et al.  A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993, Archives of ophthalmology.

[178]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[179]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[180]  J Grøndahl,et al.  Estimation of prognosis and prevalence of retinitis pigmentosa and Usher syndrome in Norway , 1987, Clinical genetics.

[181]  R W Guillery,et al.  Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops) , 1984, The Journal of comparative neurology.

[182]  E. Berson,et al.  Prevalence of retinitis pigmentosa in Maine. , 1984, American journal of ophthalmology.

[183]  H Spekreijse,et al.  A decisive electrophysiological test for human albinism. , 1983, Electroencephalography and clinical neurophysiology.

[184]  J. Vonsattel,et al.  Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes , 1982, Journal of neurology, neurosurgery, and psychiatry.

[185]  D. Hubel,et al.  The development of ocular dominance columns in normal and visually deprived monkeys , 1980, The Journal of comparative neurology.

[186]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[187]  A. Cowey Atrophy of Retinal Ganglion Cells after Removal of Striate Cortex in a Rhesus Monkey , 1974, Perception.

[188]  D. Creel,et al.  Asymmetric visually evoked potentials in human albinos: evidence for visual system anomalies. , 1974, Investigative ophthalmology.

[189]  D. Hubel,et al.  Aberrant visual projections in the Siamese cat , 1971, The Journal of physiology.

[190]  R W Guillery,et al.  A study of normal and congenitally abnormal retinogeniculate projections in cats , 1971, The Journal of comparative neurology.

[191]  R. Webster Magnetic Resonance Spectroscopy , 1962, Nature.

[192]  G Holmes,et al.  DISTURBANCES OF VISUAL ORIENTATION , 1918, The British journal of ophthalmology.