Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting

Materials science has made progress in maximizing or minimizing the thermal conductivity of materials; however, the thermal effusivity—related to the product of conductivity and capacity—has received limited attention, despite its importance in the coupling of thermal energy to the environment. Herein, we design materials that maximize the thermal effusivity by impregnating copper and nickel foams with conformal, chemical-vapor-deposited graphene and octadecane as a phase change material. These materials are ideal for ambient energy harvesting in the form of what we call thermal resonators to generate persistent electrical power from thermal fluctuations over large ranges of frequencies. Theory and experiment demonstrate that the harvestable power for these devices is proportional to the thermal effusivity of the dominant thermal mass. To illustrate, we measure persistent energy harvesting from diurnal frequencies, extracting as high as 350 mV and 1.3 mW from approximately 10 °C diurnal temperature differences.Ambient environmental thermal fluctuations offer an abundant yet difficult to harvest renewable energy source, when compared to static thermal gradients. Here, by tuning the thermal effusivity of composite phase change materials, the authors are able to harvest energy from diurnal ambient temperature changes.

[1]  Qi Zhang,et al.  Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part II: Experimental analysis , 2010 .

[2]  Mohamed Khayet,et al.  Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane , 2015 .

[3]  J. Shiomi,et al.  Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions , 2013 .

[4]  Farhad Nili,et al.  Theoretical Analysis , 2017, Encyclopedia of GIS.

[5]  Yanping Yuan,et al.  A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage , 2014 .

[6]  Ming Li,et al.  Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage , 2014 .

[7]  F. Topin,et al.  Thermal conductivity correlations of open-cell foams: Extension of Hashin–Shtrikman model and introduction of effective solid phase tortuosity , 2016 .

[8]  A. Elgafy,et al.  Effect of carbon nanofiber additives on thermal behavior of phase change materials , 2005 .

[9]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[10]  L. Meysenc,et al.  Power electronics cooling effectiveness versus thermal inertia , 2005, IEEE Transactions on Power Electronics.

[11]  William R. Oates,et al.  Materials and applications , 1996 .

[12]  S. Quoilin,et al.  Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation , 2011 .

[13]  A. Sari,et al.  Microencapsulated n-octacosane as phase change material for thermal energy storage , 2009 .

[14]  Joseph Virgone,et al.  Optimization of a Phase Change Material Wallboard for Building Use , 2008 .

[15]  Yonas Tadesse,et al.  Characterization of Pyroelectric Materials for Energy Harvesting from Human Body , 2014 .

[16]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[17]  Prabodh Bajpai,et al.  Hybrid renewable energy systems for power generation in stand-alone applications: A review , 2012 .

[18]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[19]  O. Zelaya-Ángel,et al.  Photoacoustic measurements of transparent liquid samples: thermal effusivity , 1995 .

[20]  Andrew W. Woods,et al.  An analysis of phase change material as thermal mass , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[22]  Scott Whalen,et al.  Thermoelectric energy harvesting from diurnal heat flow in the upper soil layer , 2012 .

[23]  Yongfeng Li,et al.  Controllable growth of 1–7 layers of graphene by chemical vapour deposition , 2014, 1406.2159.

[24]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[25]  D. Ouyang,et al.  Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite , 2016 .

[26]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[27]  Raphaël Couturier,et al.  Experimental study of a phase change thermal energy storage with copper foam , 2016 .

[28]  A. Charlesby CRC materials science and engineering handbook , 1997 .

[29]  James W. Stevens Optimal placement depth for air–ground heat transfer systems , 2004 .

[30]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[31]  J. Wang,et al.  A simple method for the estimation of thermal inertia , 2010 .

[32]  Juan Shi,et al.  Experimental and numerical study on melting of phase change materials in metal foams at pore scale , 2014 .

[33]  Giorgos Fagas,et al.  ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology , 2014 .

[34]  Tao Xu,et al.  A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage , 2016 .

[35]  G. Uma,et al.  Pyroelectric-Based Solar and Wind Energy Harvesting System , 2014, IEEE Transactions on Sustainable Energy.

[36]  Ulrich Schmid,et al.  Flight Test Results of a Thermoelectric Energy Harvester for Aircraft , 2012, Journal of Electronic Materials.

[37]  W. Tao,et al.  Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin , 2012 .

[38]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[39]  J. Langhoff‐Roos State‐of‐the‐art review , 2016, Acta obstetricia et gynecologica Scandinavica.

[40]  James W. Stevens Performance factors for ground-air thermoelectric power generators , 2013 .

[41]  Peter Woias,et al.  Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients , 2012, Journal of Electronic Materials.

[42]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[43]  E. C. Bayramoglu Thermal Properties and Stability of n-Octadecane Based Composites Containing Multiwalled Carbon Nanotubes , 2011 .

[44]  James W. Stevens,et al.  Assessment of near-surface ground temperature profiles for optimal placement of a thermoelectric device , 2009 .

[45]  Peter M. Attia,et al.  Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics , 2013 .

[46]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[47]  Albert Renken,et al.  Hydrogen production for fuel cell application in an autothermal micro-channel reactor , 2004 .

[48]  Peter M. Attia,et al.  Experimental studies of thermoelectric power generation in dynamic temperature environments , 2013 .

[49]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .