Linear Conjunctive Grammars and One-turn Synchronized Alternating Pushdown Automata

In this paper we introduce a subfamily of synchronized alternating pushdown automata, one-turn synchronized alternating pushdown automata, which accept the same class of languages as those generated by linear conjunctive grammars. This equivalence of models of computation is analogous to the classical equivalence between one-turn pushdown automata and linear grammars, thus strengthening the claim of synchronized alternating pushdown automata as a natural counterpart of conjunctive grammars.

[1]  Gheorghe Paun,et al.  Current Trends in Theoretical Computer Science: The Challenge of the New Century , 2004 .

[2]  Detlef Wotschke,et al.  Nondeterminism and Boolean Operations in PDAs , 1978, J. Comput. Syst. Sci..

[3]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  Alexander Okhotin,et al.  On Language Equations with One-sided Concatenation , 2013, Fundam. Informaticae.

[6]  Michael Kaminski,et al.  Conjunctive grammars and alternating pushdown automata , 2013, Acta Informatica.

[7]  Alexander Okhotin A recognition and parsing algorithm for arbitrary conjunctive grammars , 2003, Theor. Comput. Sci..

[8]  Richard J. Lipton,et al.  Alternating Pushdown and Stack Automata , 1984, SIAM J. Comput..

[9]  Alexander Okhotin Conjunctive Grammars and Systems of Language Equations , 2004, Programming and Computer Software.

[10]  David J. Weir,et al.  The equivalence of four extensions of context-free grammars , 1994, Mathematical systems theory.

[11]  Martin Kutrib,et al.  Finite turns and the regular closure of linear context-free languages , 2007, Discret. Appl. Math..

[12]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[13]  Michael Kaminski,et al.  Linear Conjunctive Grammars and One-Turn Synchronized Alternating Pushdown Automata , 2009, FG.

[14]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 2001, TOCL.

[15]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[16]  B. L. Deekshatulu,et al.  Analysis and Design of Second-order Demodulation Type Compensating Networks† , 1966 .

[17]  Alexander Okhotin Efficient automaton-based recognition for linear conjunctive languages , 2002, CIAA'02.

[18]  Alexander Okhotin,et al.  On the closure properties of linear conjunctive languages , 2003, Theor. Comput. Sci..

[19]  Alexander Okhotin An overview of conjunctive grammars , 2003 .