Provably Shorter Regular Expressions from Deterministic Finite Automata
暂无分享,去创建一个
[1] Derick Wood,et al. Obtaining shorter regular expressions from finite-state automata , 2007, Theor. Comput. Sci..
[2] Nelma Moreira,et al. Acyclic Automata with Easy-to-Find Short Regular Expressions , 2005, CIAA.
[3] B. A. Reed,et al. Algorithmic Aspects of Tree Width , 2003 .
[4] P. Erdös. On an extremal problem in graph theory , 1970 .
[5] Derick Wood,et al. Theory of computation , 1986 .
[6] Jeffrey Shallit,et al. Regular Expressions: New Results and Open Problems , 2004, J. Autom. Lang. Comb..
[7] Ian Stark,et al. Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.
[8] Janusz A. Brzozowski,et al. Derivatives of Regular Expressions , 1964, JACM.
[9] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[10] Michael Domaratzki,et al. State Complexity of Proportional Removals , 2002, J. Autom. Lang. Comb..
[11] Borivoj Melichar,et al. Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.
[12] Harold V. McIntosh. REEX: A CONVERT Program to Realize the McNaughton-Yamada Analysis Algorithm , 1968 .
[13] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[14] Andrzej Ehrenfeucht,et al. Complexity measures for regular expressions , 1974, STOC '74.
[15] M. W. Shields. An Introduction to Automata Theory , 1988 .
[16] Markus Holzer,et al. Finite Automata, Digraph Connectivity, and Regular Expression Size , 2008, ICALP.
[17] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[18] Robert E. Filman,et al. GOTO removal based on regular expressions , 1997 .
[19] Lucian Ilie,et al. Follow automata , 2003, Inf. Comput..
[20] Karl-Heinz Schmelovsky. Probleme der Bayesschen Schätzung bei zeitdiskreter Beobachtung , 1974, J. Inf. Process. Cybern..
[21] B. Mohar,et al. Graph Minors , 2009 .
[22] Jacques Sakarovitch,et al. The Language, the Expression, and the (Small) Automaton , 2005, CIAA.
[23] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[24] G. Schnitger. Regular expressions and NFAs without ε-transitions , 2006 .
[25] Graham Farr,et al. Planarization and fragmentability of some classes of graphs , 2008, Discret. Math..
[26] Manuel Delgado,et al. Approximation to the Smallest Regular Expression for a Given Regular Language , 2004, CIAA.
[27] Markus Holzer,et al. Language Operations with Regular Expressions of Polynomial Size , 2008, DCFS.
[28] Fan Chung,et al. Spectral Graph Theory , 1996 .
[29] Henning Fernau,et al. Local elimination-strategies in automata for shorter regular expressions , 2008, SOFSEM.
[30] Jan Johannsen,et al. Optimal Lower Bounds on Regular Expression Size Using Communication Complexity , 2008, FoSSaCS.
[31] Robert McNaughton,et al. Regular Expressions and State Graphs for Automata , 1960, IRE Trans. Electron. Comput..
[32] Jaikumar Radhakrishnan,et al. Greed is good: Approximating independent sets in sparse and bounded-degree graphs , 1997, Algorithmica.
[33] Wouter Gelade. Succinctness of regular expressions with interleaving, intersection and counting , 2010, Theor. Comput. Sci..
[34] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.