Regularity theory of quasilinear elliptic and parabolic equations in the Heisenberg group

This note provides a succinct survey of the existing literature concerning the H\"older regularity for the gradient of weak solutions of PDEs of the form $$\sum_{i=1}^{2n} X_i A_i(\nabla_0 u)=0 \text{ and } \partial_t u= \sum_{i=1}^{2n} X_i A_i(\nabla_0 u)$$ modeled on the $p$-Laplacian in a domain $\Omega$ in the Heisenberg group $\mathbb H^n$, with $1\le p<\infty$, and of its parabolic counterpart. We present some open problems and outline some of the difficulties they present.

[1]  G. Citti,et al.  Regularity of quasi-linear equations with Hörmander vector fields of step two , 2021, Advances in Mathematics.

[2]  A. Domokos,et al.  Riemannian approximation in Carnot groups , 2021, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  G. Citti,et al.  Lipschitz regularity for solutions of the parabolic p-Laplacian in the Heisenberg group , 2021, Annales Fennici Mathematici.

[4]  A. Domokos,et al.  Hilbert-Haar coordinates and Miranda's theorem in Lie groups , 2020 .

[5]  G. Citti,et al.  Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group , 2020, 2001.08303.

[6]  S. Mukherjee On Local Lipschitz Regularity For Quasilinear equations in the Heisenberg Group , 2018, 1804.00751.

[7]  Xiao Zhong,et al.  C1,α-regularity for variational problems in the Heisenberg group , 2017, 1711.03284.

[8]  G. Citti,et al.  Conformality and Q-harmonicity in sub-Riemannian manifolds , 2016, Journal de Mathématiques Pures et Appliquées.

[9]  G. Citti,et al.  Regularity for subelliptic PDE through uniform estimates in multi-scale geometries , 2015, 1504.04762.

[10]  G. Citti,et al.  Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian , 2013, 1306.5650.

[11]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[12]  Mohammed Kbiri Alaoui,et al.  On Degenerate Parabolic Equations , 2011, Int. J. Math. Math. Sci..

[13]  G. Mingione,et al.  Gradient regularity for elliptic equations in the Heisenberg group , 2007, 0708.3655.

[14]  G. Mingione,et al.  Regularity results for quasilinear elliptic equations in the Heisenberg group , 2007 .

[15]  Scott D. Pauls,et al.  An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem , 2007 .

[16]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[17]  A. Domokos,et al.  Subelliptic Cordes estimates , 2004 .

[18]  A. Domokos ON THE REGULARITY OF p-HARMONIC FUNCTIONS IN THE HEISENBERG GROUP , 2004 .

[19]  A. Domokos Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group , 2004 .

[20]  G. Citti,et al.  Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature , 2002 .

[21]  L. Capogna Regularity for quasilinear equations and $1-$quasiconformal maps in Carnot groups , 1999 .

[22]  L. Capogna Regularity of quasi-linear equations in the Heisenberg group , 1997 .

[23]  L. Capogna,et al.  Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .

[24]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[25]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[26]  J. Manfredi p-harmonic functions in the plane , 1988 .

[27]  D. Jerison The Poincaré inequality for vector fields satisfying Hörmander’s condition , 1986 .

[28]  P. Tolksdorf Everywhere-regularity for some quasilinear systems with a lack of ellipticity , 1983 .

[29]  Lawrence C. Evans,et al.  A new proof of local C1,α regularity for solutions of certain degenerate elliptic p.d.e. , 1982 .

[30]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[31]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[32]  J. Serrin Isolated singularities of solutions of quasi-linear equations , 1965 .

[33]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .

[34]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[35]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[36]  S. Mukherjee C1,-regularity of quasilinear equations on the Heisenberg group , 2023, Journal of Differential Equations.

[37]  A. Domokos,et al.  C 1 , ˛ -subelliptic regularity on SU ( 3 ) and compact, semi-simple Lie groups , 2019 .

[38]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[39]  D. Ricciotti p-Laplace Equation in the Heisenberg Group , 2015 .

[40]  A. Domokos,et al.  C 1 , α-regularity for p-harmonic functions in the Heisenberg group for p near 2 , 2004 .

[41]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[42]  D. Chae,et al.  REGULARITY OF SOLUTIONS TO , 1999 .

[43]  Chao-Jiang Xu Regularity for Quasilinear Second-Order Subelliptic Equations , 1992 .

[44]  H. Choe Hälder regularity for the gradient of solutions of certain singular parabolic systems , 1991 .

[45]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[46]  Satyanad Kichenassamy,et al.  Singular Solutions of the p-Laplace Equation (Erratum). , 1987 .

[47]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[48]  Avner Friedman,et al.  Regularity of solutions of nonlinear degenerate parabolic systems. , 1984 .

[49]  J. L. Lewis Regularity of the derivatives of solutions to certain degenerate elliptic equations , 1983 .