Islands in the stream: The effect of plasma flow on tearing stability

Reducing plasma flow clearly decreases the stability of tearing modes in multiple regimes (sawtooth, hybrid) in both high- and low-aspect-ratio tokamaks (DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)], Joint European Torus [M. Keilhacker and the JET Team, Plasma Phys. Controlled Fusion 41, 301 (1999)], National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng, Nucl. Fusion 40, 557 (2000)], each with distinct means of lessening rotation). Further, reducing flow makes pre-existing “saturated” islands larger at the same beta (β). Thus lower plasma flow impairs high-beta operation owing both to the destabilization and to the impact of tearing-mode islands. Experimental results suggest that flow shear (not flow) at the tearing rational surface is classically stabilizing, making the effective tearing stability index Δ′ of the total current density profile more negative (more stable). In this picture, with profiles and all else the same, the minimum metastable beta at which neoclassical tearing m...

[1]  D. A. Humphreys,et al.  CONTROL OF NEOCLASSICAL TEARING MODES IN DIII-D , 2001 .

[2]  J. Greene,et al.  Effect of toroidal plasma flow and flow shear on global magnetohydrodynamic MHD modes , 1995 .

[3]  R. J. La Haye,et al.  Neoclassical tearing modes and their controla) , 2005 .

[4]  T. Petrie,et al.  Influence of toroidal rotation on transport and stability in hybrid scenario plasmas in DIII-D , 2008 .

[5]  O. Sauter,et al.  Control of neoclassical tearing modes by sawtooth control. , 2002, Physical review letters.

[6]  R. J. Buttery,et al.  Dimensionless scaling of the critical beta for onset of a neoclassical tearing mode , 2000 .

[7]  P. Morrison,et al.  Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity , 1993 .

[8]  B. V. Waddell,et al.  Saturation of the tearing mode , 1976 .

[9]  L. L. Lao,et al.  SIMULTANEOUS MEASUREMENT OF Q AND ER PROFILES USING THE MOTIONAL STARK EFFECT IN HIGH-PERFORMANCE DIII-D PLASMAS (INVITED) , 1999 .

[10]  C. Hegna,et al.  STABILITY OF TEARING MODES IN TOKAMAK PLASMAS , 1994 .

[11]  C. Bishop,et al.  On the difficulty of determining tearing mode stability , 1991 .

[12]  M. Wade,et al.  Magnetic-flux pumping in high-performance, stationary plasmas with tearing modes. , 2009, Physical review letters.

[13]  H. Wilson,et al.  Propagation of magnetic islands in the Er=0 frame of co-injected neutral beam driven discharges in the DIII-D tokamak , 2003 .

[14]  R. Budny,et al.  Experimental test of the neoclassical theory of impurity poloidal rotation in tokamaks , 2006 .

[15]  J. L. Luxon,et al.  A design retrospective of the DIII-D tokamak , 2002 .

[16]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[17]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[18]  P. Morrison,et al.  Resistive tearing instability with equilibrium shear flow , 1990 .

[19]  T. Gianakon,et al.  Computational modeling of neoclassical and resistive magnetohydrodynamic tearing modes in tokamaks , 1996 .

[20]  Ulrich Stroth,et al.  Characterization of the angular momentum transport in ASDEX , 1991 .

[21]  L. Eriksson,et al.  Sawtooth-control mechanism using toroidally propagating ion-cyclotron-resonance waves in tokamaks. , 2009, Physical review letters.

[22]  B. V. Waddell,et al.  Poloidal magnetic field fluctuations , 1979 .

[23]  H R Wilson,et al.  Finite Larmor-radius theory of magnetic island evolution. , 2001, Physical review letters.

[24]  P. Morrison,et al.  Resistive tearing mode instability with shear flow and viscosity , 1990 .

[25]  R. L. La Haye,et al.  Beta limit due to m/n = 2/1 tearing mode onset in the DIII-D hybrid scenario , 2006 .

[26]  Paul H. Rutherford,et al.  Nonlinear growth of the tearing mode , 1973 .

[27]  R. L. Haye,et al.  The stabilizing effect of flow shear on m/n=3/2 magnetic island width in DIII-D , 2008 .

[28]  R. Fitzpatrick,et al.  Effect of sheared flow on magnetic islands , 2007 .

[29]  L. L. Lao,et al.  A mechanism for tearing onset near ideal stability boundaries , 2003 .

[30]  A. Bondeson,et al.  Linear Stability of Resistive MHD Modes , 1994 .

[31]  L. Lao,et al.  Study of a low β classical tearing mode in DIII-D , 2002 .

[32]  James D. Callen,et al.  Magnetic island deformation due to sheared flow and viscosity , 1999 .

[33]  J. Callen,et al.  Global energy confinement degradation due to macroscopic phenomena in tokamaks , 1990 .

[34]  H. R. Strauss,et al.  Resistive ballooning modes , 1981 .

[35]  M Keilhacker Fusion physics progress on the Joint European Torus (JET) , 1999 .

[36]  M. F. F. Nave,et al.  Mode locking in tokamaks , 1990 .

[37]  Steven J. Plimpton,et al.  Nonlinear magnetohydrodynamics simulation using high-order finite elements , 2004 .

[38]  T. Luce,et al.  Tearing mode stability studies near ideal stability boundaries in DIII-D , 2002 .

[39]  James D. Callen,et al.  Dynamics of seed magnetic island formation due to geometrically coupled perturbations , 1998 .

[40]  E. J. Strait,et al.  Relationship between onset thresholds, trigger types and rotation shear for the m/n = 2/1 neoclassical tearing mode in a high-β spherical torus , 2009 .

[41]  E. Lazzaro,et al.  Effect of sheared equilibrium plasma rotation on the classical tearing mode in a cylindrical geometry , 2007 .

[42]  E. J. Strait,et al.  The influence of rotation on the βN threshold for the 2∕1 neoclassical tearing mode in DIII-Da) , 2008 .

[43]  A. Sen,et al.  Effect of sheared flows on classical and neoclassical tearing modes , 2005 .

[44]  H. E. St. John,et al.  Off-axis neutral beam current drive for advanced scenario development in DIII-D , 2009 .