Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology

In spatial reasoning, in particular for applications in image understanding, structure recognition and computer vision, a lot of attention has to be paid to spatial relationships and to the imprecision attached to information and knowledge to be handled. Two main components are knowledge representation and reasoning. We show in this paper that the fuzzy set framework associated to the formalism provided by mathematical morphology and formal logics allows us to derive appropriate representations and reasoning tools.

[1]  Marco Aiello,et al.  Spatial reasoning : theory and practice , 2002 .

[2]  L. Talmy Toward a Cognitive Semantics , 2003 .

[3]  Isabelle Bloch,et al.  On Fuzzy Spatial Distances , 2003 .

[4]  Didier Dubois,et al.  Logique possibiliste et fusion d'informations , 2003, Tech. Sci. Informatiques.

[5]  Annette Herskovits,et al.  Language and spatial cognition , 1986 .

[6]  Isabelle Bloch,et al.  Spatial reasoning with incomplete information on relative positioning , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  H. Pick,et al.  Spatial orientation : theory, research, and application , 1984 .

[8]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[9]  Isabelle Bloch,et al.  Fuzzy spatial relationships for image processing and interpretation: a review , 2005, Image Vis. Comput..

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Leonard Talmy,et al.  How Language Structures Space , 1983 .

[12]  Bernadette Bouchon-Meunier,et al.  Towards general measures of comparison of objects , 1996, Fuzzy Sets Syst..

[13]  Isabelle Bloch,et al.  Modal Logics Based on Mathematical Morphology for Qualitative Spatial Reasoning , 2002, J. Appl. Non Class. Logics.

[14]  M. Denis,et al.  Spatial discourse and navigation: an analysis of route directions in the city of Venice , 1999 .

[15]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[16]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[17]  Mark Gahegan,et al.  Proximity Operators for Qualitative Spatial Reasoning , 1995, COSIT.

[18]  R. Hart,et al.  The Development of Spatial Cognition: A Review. , 1973 .

[19]  Benjamin Kuipers,et al.  Navigation and Mapping in Large Scale Space , 1988, AI Mag..

[20]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[21]  Bilal M. Ayyub,et al.  Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach , 1997 .

[22]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[23]  Henk J. A. M. Heijmans,et al.  Grey-Scale Morphology Based on Fuzzy Logic , 2002, Journal of Mathematical Imaging and Vision.

[24]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[25]  Bernard De Baets,et al.  A Fuzzy Morphology: a Logical Approach , 1998 .

[26]  Isabelle Bloch,et al.  Spatial representation of spatial relationship knowledge , 2000, KR.

[27]  Anthony G. Cohn,et al.  Spatial Locations via Morpho-Mereology , 2000, KR.

[28]  Didier Dubois,et al.  Merging Fuzzy Information , 1999 .

[29]  E. Kerre,et al.  Classical and Fuzzy Approaches towards Mathematical Morphology , 2000 .

[30]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[31]  Roberto Marcondes Cesar Junior,et al.  Mathematical Modeling of the Relationship "between" Based On Morphological Operators , 2005, ISMM.

[32]  Hans W. Guesgen,et al.  Imprecise reasoning in geographic information systems , 2000, Fuzzy Sets Syst..

[33]  Isabelle Bloch,et al.  Directional relative position between objects in image processing: a comparison between fuzzy approaches , 2003, Pattern Recognit..

[34]  Divyendu Sinha,et al.  Fuzzy mathematical morphology , 1992, J. Vis. Commun. Image Represent..

[35]  Isabelle Bloch,et al.  On links between mathematical morphology and rough sets , 2000, Pattern Recognit..

[36]  R. Downs,et al.  Image and Environment: Cognitive Mapping and Spatial Behavior , 2017 .

[37]  Lynn Nadel,et al.  The Psychobiology of Spatial Behavior: The Hippocampal Formation and Spatial Mapping , 1995 .

[38]  Isabelle Bloch,et al.  Fuzzy morphisms between graphs , 2002, Fuzzy Sets Syst..

[39]  Donna J. Peuquet,et al.  Representations of Geographic Space: Toward a Conceptual Synthesis , 1988 .

[40]  Sébastien Konieczny,et al.  Merging with Integrity Constraints , 1999, ESCQARU.

[41]  Isabelle Bloch,et al.  Inference of directional spatial relationship between points: a probabilistic approach , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[42]  Isabelle Bloch Fuzzy Spatial Relationships for Model-Based Pattern Recognition in Images and Spatial Reasoning Under Imprecision , 2003, WILF.

[43]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[44]  Isabelle Bloch,et al.  Fusion of spatial relationships for guiding recognition, example of brain structure recognition in 3D MRI , 2005, Pattern Recognit. Lett..

[45]  Isabelle Bloch,et al.  On fuzzy distances and their use in image processing under imprecision , 1999, Pattern Recognit..

[46]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[47]  Johan van Benthem,et al.  A ModalWalk Through Space , 2002, J. Appl. Non Class. Logics.

[48]  Isabelle Bloch,et al.  Fuzzy Adjacency between Image Objects , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[49]  Isabelle Bloch,et al.  On the Representation of Fuzzy Spatial Relations in Robot Maps , 2003 .

[50]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[51]  Eliseo Clementini,et al.  Qualitative Representation of Positional Information , 1997, Artif. Intell..

[52]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[53]  Celso C. Ribeiro,et al.  Model-Based Scene Recognition Using Graph Fuzzy Homomorphism Solved By Genetic Algorithm , 1999 .

[54]  Jérôme Lang,et al.  Logical representation of preferences for group decision making , 2000, KR.

[55]  Etienne Kerre,et al.  Fuzzy techniques in image processing , 2000 .

[56]  R. Yager Connectives and quantifiers in fuzzy sets , 1991 .

[57]  Isabelle Bloch,et al.  Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition--Application to 3D brain imaging , 2003, Artif. Intell..

[58]  Soumitra Dutta,et al.  Approximate spatial reasoning: Integrating qualitative and quantitative constraints , 1991, Int. J. Approx. Reason..

[59]  Isabelle Bloch,et al.  Description of brain internal structures by means of spatial relations for MR image segmentation , 2004, SPIE Medical Imaging.

[60]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[61]  Jérôme Lang,et al.  Towards mathematical morpho-logics , 2002 .

[62]  Frank Wolter,et al.  Axiomatizing Distance Logics , 2002, J. Appl. Non Class. Logics.

[63]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[64]  Roberto Marcondes Cesar Junior,et al.  Inexact graph matching using stochastic optimization techniques for facial feature recognition , 2002, Object recognition supported by user interaction for service robots.

[65]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[66]  Isabelle Bloch,et al.  Inexact graph matching by means of estimation of distribution algorithms , 2002, Pattern Recognit..

[67]  Daniel R. Montello,et al.  Scale and Multiple Psychologies of Space , 1993, COSIT.