Broadband dielectric spectroscopy on human blood.

BACKGROUND Dielectric spectra of human blood reveal a rich variety of dynamic processes. Achieving a better characterization and understanding of these processes not only is of academic interest but also of high relevance for medical applications as, e.g., the determination of absorption rates of electromagnetic radiation by the human body. METHODS The dielectric properties of human blood are studied using broadband dielectric spectroscopy, systematically investigating the dependence on temperature and hematocrit value. By covering a frequency range from 1Hz to 40GHz, information on all the typical dispersion regions of biological matter is obtained. RESULTS AND CONCLUSIONS We find no evidence for a low-frequency relaxation ("α-relaxation") caused, e.g., by counterion diffusion effects as reported for some types of biological matter. The analysis of a strong Maxwell-Wagner relaxation arising from the polarization of the cell membranes in the 1-100MHz region ("β-relaxation") allows for the test of model predictions and the determination of various intrinsic cell properties. In the microwave region beyond 1GHz, the reorientational motion of water molecules in the blood plasma leads to another relaxation feature ("γ-relaxation"). Between β- and γ-relaxations, significant dispersion is observed, which, however, can be explained by a superposition of these relaxation processes and is not due to an additional "δ-relaxation" often found in biological matter. GENERAL SIGNIFICANCE Our measurements provide dielectric data on human blood of so far unsurpassed precision for a broad parameter range. All data are provided in electronic form to serve as basis for the calculation of the absorption rate of electromagnetic radiation and other medical purposes. Moreover, by investigating an exceptionally broad frequency range, valuable new information on the dynamic processes in blood is obtained.

[1]  A. A. Volkov,et al.  Origin of apparent colossal dielectric constants , 2002 .

[2]  G. Schwarz A THEORY OF THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1,2 , 1962 .

[3]  H. Pfützner,et al.  Dielectric analysis of blood by means of a raster-electrode technique , 1984, Medical and Biological Engineering and Computing.

[4]  Kremer,et al.  Anomalies in the scaling of the dielectric alpha -relaxation. , 1993, Physical review letters.

[5]  H P Schwan,et al.  ELECTRODE POLARIZATION IMPEDANCE AND MEASUREMENTS IN BIOLOGICAL MATERIALS * , 1968, Annals of the New York Academy of Sciences.

[6]  C. Cametti,et al.  Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach. , 1990, Biochimica et biophysica acta.

[7]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[8]  E. Grant THE STRUCTURE OF WATER NEIGHBORING PROTEINS, PEPTIDES AND AMINO ACIDS AS DEDUCED FROM DIELECTRIC MEASUREMENTS , 1965 .

[9]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[10]  H. Schwan,et al.  Dielectric properties and ion mobility in erythrocytes. , 1966, Biophysical journal.

[11]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[12]  P. Lunkenheimer,et al.  Wide range dielectric spectroscopy on glass-forming materials: An experimental overview , 1999, cond-mat/9908279.

[13]  H. F. Cook,et al.  A comparison of the dielectric behaviour of pure water and human blood at microwave frequencies , 1952 .

[14]  Koji Asami,et al.  Characterization of heterogeneous systems by dielectric spectroscopy , 2002 .

[15]  C. Cametti,et al.  Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell-Wagner-Hanai effective medium theory formulations , 2002 .

[16]  H. Schwan,et al.  Electrical Properties of the Plasma Membrane of Erythrocytes at Low Frequencies , 1956, Nature.

[17]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[18]  Akio Yasuda,et al.  Dielectric coagulometry: a new approach to estimate venous thrombosis risk. , 2010, Analytical chemistry.

[19]  Tohru Yamaguchi,et al.  Electrical and Morphological Changes of Human Erythrocytes under High Hydrostatic Pressure Followed by Dielectric Spectroscopy , 1998, Annals of Biomedical Engineering.

[20]  T. Hanai Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions , 1960 .

[21]  A remark on the “Theory of the dielectric dispersion due to the interfacial polarization” , 1961 .

[22]  Sandro Ridella,et al.  Measurements of Complex Dielectric Constant of Human Sera and Erythrocytes , 1979, IEEE Transactions on Instrumentation and Measurement.

[23]  P. Lunkenheimer,et al.  Dielectric spectroscopy on aqueous electrolytic solutions , 2009, Radiation and Environmental Biophysics.

[24]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[25]  O. Schanne,et al.  Impedance measurements in biological cells , 1978 .

[26]  S. R. Elliott,et al.  A.c. conduction in amorphous chalcogenide and pnictide semiconductors , 1987 .

[27]  Methode zur Leitfähigkeitsbestimmung des Inneren der menschlichen Erythrozyten auf der Grundlage der Messung elektrischer Größen der Suspension , 1972 .

[28]  H. Fricke THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD , 1925, The Journal of general physiology.

[29]  T. Pajkossy,et al.  Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes , 1985 .

[30]  Udo Kaatze,et al.  Hydrogen network fluctuations and dielectric spectrometry of liquids , 2002 .

[31]  Friedrich Kremer,et al.  Broadband dielectric spectroscopy , 2003 .

[32]  Koji Asami,et al.  Characterization of biological cells by dielectric spectroscopy , 2002 .

[33]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[34]  H. F. Cook,et al.  Dielectric Behaviour of Human Blood at Microwave Frequencies , 1951, Nature.

[35]  K. Foster,et al.  Dielectric properties of tissues and biological materials: a critical review. , 1989, Critical reviews in biomedical engineering.

[36]  Christopher L. Davey,et al.  The dielectric properties of biological cells at radiofrequencies : Applications in biotechnology , 1999 .

[37]  J. Barthel,et al.  The dielectric relaxation of water between 0°C and 35°C , 1999 .

[38]  H. Meiselman,et al.  Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method. , 1999, Biorheology.

[39]  H. Fricke,et al.  Relation of the Permittivity of Biological Cell Suspensions to Fractional Cell Volume , 1953, Nature.

[40]  Guidelines Icnirp Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[41]  Kenneth R. Foster,et al.  Dielectric Properties of Tissues , 2008 .

[42]  E. Grant Dielectric dispersion in bovine serum albumen. , 1966, Journal of Molecular Biology.

[43]  K. Cole ELECTRIC IMPEDANCE OF SUSPENSIONS OF SPHERES , 1928, The Journal of general physiology.

[44]  K. Ngai Dynamic and thermodynamic properties of glass-forming substances , 2000 .

[45]  E. Grant,et al.  An investigation by dielectric methods of hydration in myoglobin solutions. , 1974, The Biochemical journal.

[46]  Akio Yasuda,et al.  Dielectric inspection of erythrocyte morphology , 2008, Physics in medicine and biology.

[47]  T. S. ENGLAND,et al.  Dielectric Properties of the Human Body for Wave-lengths in the 1–10 cm. Range , 1950, Nature.

[48]  C. Cametti,et al.  Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. , 2001, Bioelectrochemistry.

[49]  J. Zarzycki,et al.  Glasses and the vitreous state , 1991 .

[50]  P. Lunkenheimer,et al.  Radio-frequency dielectric measurements at temperatures from 10 to 450 K , 1989 .

[51]  C C Davis,et al.  Microwave dielectric measurements of erythrocyte suspensions. , 1994, Biophysical journal.

[52]  H. Meiselman,et al.  Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood. , 2000, Biorheology.

[53]  Liu Fractal model for the ac response of a rough interface. , 1985, Physical review letters.

[54]  H. Weingärtner,et al.  Hydration dynamics of water near an amphiphilic model peptide at low hydration levels: a dielectric relaxation study. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[56]  Ronald Pethig,et al.  Dielectric and electronic properties of biological materials , 1979 .

[57]  J. Oncley The Investigation of Proteins by Dielectric Measurements. , 1942 .

[58]  R. Cole,et al.  High Frequency Dispersion in n-Propanol , 1952 .

[59]  H. Schwan,et al.  Further observations on the electrical properties of hemoglobin-bound water. , 1969, The Journal of physical chemistry.

[60]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems ii. The Capacity of a Suspension of Conducting Spheroids Surrounded by a Non-Conducting Membrane for a Current of Low Frequency , 1925 .

[61]  Rudolf Höber,et al.  Messungen der inneren Leitfähigkeit von Zellen , 1913, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[62]  W. Ellison,et al.  Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C , 2007 .

[63]  Y. Feldman,et al.  Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. , 1996, Biochimica et biophysica acta.

[64]  T. Pajkossy,et al.  Impedance of Fractal Blocking Electrodes , 1986 .

[65]  A. Owens,et al.  The diffusion-controlled relaxation model for ionic transport in glasses , 1989 .

[66]  F. Bordi,et al.  Conductometric properties of human erythrocyte membranes: dependence on haematocrit and alkali metal ions of the suspending medium , 1997, European Biophysics Journal.

[67]  Yuri Feldman,et al.  Time domain dielectric spectroscopy study of biological systems , 2003 .

[68]  E. Carstensen,et al.  Di-electric properties of the membrane of lysed erythrocytes. , 1957, Science.

[69]  F. Apollonio,et al.  Dielectric Spectroscopy of Blood Cells Suspensions: Study on Geometrical Structure of Biological Cells , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[70]  Tamaz Chelidze,et al.  Dielectric spectroscopy of blood , 2002 .

[71]  B. Bagchi,et al.  Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. , 2000, Chemical reviews.

[72]  H. Sillescu Heterogeneity at the glass transition: a review , 1999 .

[73]  H. Weingärtner,et al.  The Dielectric Spectrum of Ubiquitin in Aqueous Solution , 2001 .

[74]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[75]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[76]  Charles Polk,et al.  CRC Handbook of Biological Effects of Electromagnetic Fields , 1986 .

[77]  A. Yasuda,et al.  Dielectric inspection of erythrocytes , 2010 .

[78]  K. N. Marsh,et al.  Recommended reference materials for realization of physicochemical properties. Section: Permittivity , 1981 .

[79]  S Takashima,et al.  Dielectric properties of mouse lymphocytes and erythrocytes. , 1989, Biochimica et biophysica acta.

[80]  C. Angell Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties , 2008, Science.

[81]  Ieee Standards Board IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300 GHz , 1992 .

[82]  D. Kell,et al.  On the dielectric properties of cell suspensions at high volume fractions , 1992 .

[83]  S. Havriliak,et al.  A complex plane analysis of α‐dispersions in some polymer systems , 2007 .

[84]  A. Yasuda,et al.  Dielectric cytometry with three-dimensional cellular modeling. , 2008, Biophysical journal.

[85]  M Nadi,et al.  Dielectric properties of blood: an investigation of haematocrit dependence. , 2003, Physiological measurement.

[86]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[87]  D. Kell,et al.  Dielectric properties of human blood and erythrocytes at radio frequencies (0.2–10 MHz); dependence on cell volume fraction and medium composition , 2005, European Biophysics Journal.

[88]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[89]  R J Sheppard,et al.  Dielectric behaviour of biological molecules in solution , 1978 .

[90]  H. Schwan,et al.  Die Dielektrizitätskonstante und Leitfähigkeit des Blutes bei ultrahohen Frequenzen , 1948, Naturwissenschaften.

[91]  Christopher L. Davey,et al.  On the dielectric properties of cell suspensions at high volume fractions , 1992 .

[92]  C. Cametti,et al.  Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane. , 2005, Bioelectrochemistry.

[93]  H. P. Schwan,et al.  Electrical properties of blood and its constitutents: Alternating current spectroscopy , 1983, Blut: Zeitschrift für die Gesamte Blutforschung.

[94]  Henrik Jeldtoft Jensen,et al.  Glassy dynamics , 2007, Scholarpedia.

[95]  Dispersion and Absorption in Dielectrics 1 , 2022 .

[96]  T. X. Zhao,et al.  Electrical impedance and haematocrit of human blood with various anticoagulants. , 1993, Physiological measurement.

[97]  F F Becker,et al.  Separation of human breast cancer cells from blood by differential dielectric affinity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Maczuk,et al.  ON THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1 , 1962 .

[99]  A. Yasuda,et al.  The effects of erythrocyte deformability upon hematocrit assessed by the conductance method , 2009, Physics in medicine and biology.

[100]  H. Pauly,et al.  Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale , 1959 .

[101]  K. Funke Ion dynamics and correlations : translational and localized ionic hopping motion in solid electrolytes , 1993 .

[102]  W. J. Ellisona Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0–25 THz and the Temperature Range 0–100 °C , 2007 .

[103]  H. Schwan ELECTRICAL PROPERTIES OF BOUND WATER , 1965 .

[104]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[105]  J. Gimsa,et al.  On the temperature dependence of the dielectric membrane properties of human red blood cells. , 2007, Bioelectrochemistry.

[106]  S. Takashima,et al.  The dielectric behavior of aqueous solutions of bovine serum albumin from radiowave to microwave frequencies. , 1968, The Journal of physical chemistry.

[107]  H. Schwan,et al.  Die elektrischen Eigenschaften von Muskelgewebe bei Niederfrequenz , 1954 .

[108]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[109]  Koji Asami,et al.  Dielectric Approach to Suspensions of Ellipsoidal Particles Covered with a Shell in Particular Reference to Biological Cells , 1980 .

[110]  F. Barnes,et al.  Handbook of biological effects of electromagnetic fields , 2007 .

[111]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[112]  U. Kaatze Complex Permittivity of Water as a Function of Frequency and Temperature , 1989 .

[113]  F. Podo Dielectric and Electronic Properties of Biological Materials , 1979 .

[114]  E Gheorghiu On the Limits of Ellipsoidal Models when Analyzing Dielectric Behavior of Living Cells Emphasis on Red Blood Cells , 1999, Annals of the New York Academy of Sciences.