Robust controllability for a class of uncertain linear time-invariant MIMO systems
暂无分享,去创建一个
[1] S. Shankar Sastry,et al. The robustness of controllability and observability of linear time-varying systems , 1982 .
[2] C. Paige. Properties of numerical algorithms related to computing controllability , 1981 .
[3] A. Laub,et al. The singular value decomposition: Its computation and some applications , 1980 .
[4] Jianliang Wang,et al. Robustness of uncertain descriptor systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[5] C. Soh,et al. Robustness of uncertain descriptor systems , 1997 .
[6] Jang Gyu Lee,et al. Robustness of controllability and observability of continuous linear time-varying systems with parameter perturbations , 1999, IEEE Trans. Autom. Control..
[7] B. AfeArd. CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .
[8] Stephen Barnett,et al. Introduction to Mathematical Control Theory , 1975 .
[9] Jian Liang Wang,et al. Necessary and sufficient conditions for the controllability of linear interval descriptor systems , 1998, Autom..
[10] B. R. Barmish,et al. Global and point controllability of uncertain dynamical systems , 1982 .
[11] Anthony N. Michel,et al. Necessary and sufficient conditions for the controllability and observability of a class of linear, time-invariant systems with interval plants , 1994, IEEE Trans. Autom. Control..
[12] A. Michel,et al. Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices , 1994, IEEE Trans. Autom. Control..
[13] William R. Cluett,et al. Optimal choice of time-scaling factor for linear system approximations using Laguerre models , 1994, IEEE Trans. Autom. Control..
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] Jianliang Wang,et al. Robust C-controllability and/or C-observability for uncertain descriptor systems with interval perturbations in all matrices , 1999, IEEE Trans. Autom. Control..