A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system

Sensor-embedded products (SEPs) eliminate a majority of uncertainties involved in product recovery by providing item-based life-cycle information. This information includes the content of each product and component conditions, and enables the estimation of remaining useful life of the components. Once the data on the products are captured, it is possible to make optimal recovery decisions without any preliminary disassembly or inspection operations.

[1]  Azad M. Madni,et al.  Guest Editorial RFID Technology: Opportunities and Challenges , 2007, IEEE Syst. J..

[2]  E Iakovou,et al.  On the optimal design of the disassembly and recovery processes. , 2009, Waste management.

[3]  Surendra M. Gupta,et al.  Petri net approach to disassembly process planning for products with complex AND/OR precedence relationships , 2001, Eur. J. Oper. Res..

[4]  Bongju Jeong,et al.  Supply planning model for remanufacturing system in reverse logistics environment , 2006, Comput. Ind. Eng..

[5]  László Monostori,et al.  A survey of applications and requirements of unique identification systems and RFID techniques , 2011, Comput. Ind..

[6]  Conrad Luttropp,et al.  Improved recycling with life cycle information tagged to the product , 2010 .

[7]  Selwyn Piramuthu,et al.  Remanufacturing with RFID Item-Level Information , 2009, WEB.

[8]  Karen Ka-Leung Moon,et al.  RFID research: An academic literature review (1995–2005) and future research directions , 2008 .

[9]  Augusto Q. Novais,et al.  An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty , 2007, Eur. J. Oper. Res..

[10]  T. S,et al.  MANAGING RFID PROJECTS IN ORGANIZATIONS , 2012 .

[11]  Dimitris Kiritsis,et al.  RFID Technology and Applications: Closing product information loops with product-embedded information devices: RFID technology and applications, models and metrics , 2008 .

[12]  P. S. Heyns,et al.  Machine and component residual life estimation through the application of neural networks , 2007, Reliab. Eng. Syst. Saf..

[13]  George Q. Huang,et al.  Wireless manufacturing: a literature review, recent developments, and case studies , 2009 .

[14]  Eric W.T. Ngai,et al.  RFID: Technology, applications, and impact on business operations , 2008 .

[15]  Surendra M. Gupta,et al.  Lot sizing in reverse MRP for scheduling disassembly , 2008 .

[16]  Surendra M. Gupta,et al.  Disassembly line balancing. , 2007 .

[17]  Surendra M. Gupta,et al.  Physical Programming: A Review of the State of the Art , 2012 .

[18]  Mehmet Ali Ilgin,et al.  Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. , 2010, Journal of environmental management.

[19]  Surendra M. Gupta,et al.  Using Neural Networks to Solve a Disassembly-to-Order Problem , 2009 .

[20]  Surendra M. Gupta,et al.  A path-relinking approach for a bi-criteria disassembly sequencing problem , 2008, Comput. Oper. Res..

[21]  Askiner Gungor,et al.  Issues in environmentally conscious manufacturing and product recovery: a survey , 1999 .

[22]  Surendra M. Gupta,et al.  Disassembly to order system under uncertainty , 2006 .

[23]  John S. Usher,et al.  Production planning for remanufactured products , 2007 .

[24]  Michael E. Ketzenberg,et al.  The value of information in a capacitated closed loop supply chain , 2009, Eur. J. Oper. Res..

[25]  Gq Huang,et al.  International Journal of Computer Integrated Manufacturing: Editorial , 2009 .

[26]  Duncan McFarlane,et al.  RFID-based product information in end-of-life decision making , 2007 .

[27]  Erwin van der Laan,et al.  Quantitative models for reverse logistics: A review , 1997 .

[28]  Katina Michael,et al.  Guest Editors' Introduction , 2008, J. Theor. Appl. Electron. Commer. Res..

[29]  Surendra M. Gupta,et al.  Evaluating the impact of sensor-embedded products on the performance of an air conditioner disassembly line , 2011 .

[30]  Venkata Krishna Gonnuru Radio-frequency identification (RFID) integrated fuzzy based disassembly planning and sequencing for end-of-life products , 2010 .

[31]  Surendra M. Gupta,et al.  Linear Physical Programming Approach for a Disassembly- To-Order System under Stochastic Yields and Product's Deterioration , 2006 .

[32]  V. Guide Production planning and control for remanufacturing: industry practice and research needs , 2000 .

[33]  Alfred J.D. Lambert,et al.  Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling , 2004 .

[34]  Eric W. T. Ngai,et al.  Managing RFID projects in organizations , 2009, Eur. J. Inf. Syst..

[35]  Geraldo Ferrer Yield information and supplier responsiveness in remanufacturing operations , 2003, Eur. J. Oper. Res..

[36]  Ting Qu,et al.  RFID-enabled gateway product service system for collaborative manufacturing alliances , 2011 .

[37]  Surendra M. Gupta,et al.  Product Life Cycle Monitoring via Embedded Sensors , 2007 .

[38]  Mehmet Ali Ilgin The disassembly line: balancing and modeling, by S.M. McGovern and S.M. Gupta , 2011 .

[39]  R. Srivastava,et al.  Production planning and control for remanufacturing: a state - of - the - art survey , 1999 .

[40]  Michael Grüninger,et al.  Introduction , 2002, CACM.

[41]  Roy Want,et al.  RFID Technology and Applications , 2006, IEEE Pervasive Computing.

[42]  Surendra M. Gupta,et al.  A balancing method and genetic algorithm for disassembly line balancing , 2007, Eur. J. Oper. Res..

[43]  Sami Kara,et al.  An integrated methodology for assessing physical and technological life of products for reuse , 2009 .

[44]  Felix T.S. Chan,et al.  A superiority search and optimisation algorithm to solve RFID and an environmental factor embedded closed loop logistics model , 2011 .

[45]  Jim Browne,et al.  RFID in product lifecycle management: a case in the automotive industry , 2009, Int. J. Comput. Integr. Manuf..

[46]  Marlin H. Mickle,et al.  Guest Editorial Special Section on RFID , 2009, IEEE Trans Autom. Sci. Eng..

[47]  E. Kongar,et al.  A multiple objective tabu search approach for end-of-life product disassembly , 2009, Int. J. Adv. Oper. Manag..

[48]  Ian M. Langella Heuristics for demand-driven disassembly planning , 2007, Comput. Oper. Res..

[49]  Muris Lage Junior,et al.  Production planning and control for remanufacturing: literature review and analysis , 2012 .

[50]  Surendra M. Gupta,et al.  Performance improvement potential of sensor embedded products in environmental supply chains , 2011 .

[51]  M. Hagberg Editorial , 2004 .

[52]  Eric W.T. Ngai RFID technology and applications in production and supply chain management , 2010 .

[53]  Pedro M. Reyes,et al.  Empirical evidence of RFID impacts on supply chain performance , 2009 .

[54]  Alessandro Giua,et al.  Guest Editorial , 2001, Discrete event dynamic systems.

[55]  Patroklos Georgiadis,et al.  Flexible long-term capacity planning in closed-loop supply chains with remanufacturing , 2013, Eur. J. Oper. Res..

[56]  Michael E. Ketzenberg,et al.  Value of Information in Closed Loop Supply Chains , 2006 .

[57]  Surendra M. Gupta,et al.  A MULTI-CRITERIA DECISION MAKING APPROACH FOR DISASSEMBLY-TO-ORDER SYSTEMS , 2002 .

[58]  Katina Michael,et al.  RFID and Supply Chain Management: Introduction to the Special Issue , 2008, J. Theor. Appl. Electron. Commer. Res..

[59]  I D Williams,et al.  A zero waste vision for industrial networks in Europe. , 2012, Journal of hazardous materials.

[60]  Gilvan C. Souza,et al.  MIXED ASSEMBLY AND DISASSEMBLY OPERATIONS FOR REMANUFACTURING , 2003 .

[61]  Karl Inderfurth,et al.  Heuristics for solving disassemble-to-order problems with stochastic yields , 2006, OR Spectr..

[62]  Florin Gheorghe Filip,et al.  Evolutionary Programming in Disassembly Decision Making , 2008 .

[63]  Geraldo Ferrer,et al.  Value of information in remanufacturing complex products , 2004 .

[64]  Basheer M. Khumawala,et al.  Enhancing Product Recovery Value in Closed-Loop Supply Chains with RFID , 2007 .

[65]  Hau L. Lee,et al.  RFID and Operations Management: Technology, Value, and Incentives , 2007 .

[66]  Surendra M. Gupta,et al.  COST-BENEFIT ANALYSIS OF SENSOR-EMBEDDED PRODUCTS BASED DISASSEMBLY- TO- ORDER SYSTEM , 2009 .

[67]  Otto Rentz,et al.  Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry , 2006, Eur. J. Oper. Res..

[68]  Surendra M. Gupta,et al.  Solving the disassembly-to-order problem using linear physical programming , 2009, Int. J. Math. Oper. Res..

[69]  Surendra M. Gupta,et al.  Comparison of economic benefits of sensor embedded products and conventional products in a multi-product disassembly line , 2010, Comput. Ind. Eng..

[70]  Surendra M. Gupta,et al.  Evolutionary computation with linear physical programming for solving a disassembly-to-order system , 2006, SPIE Optics East.

[71]  Patroklos Georgiadis,et al.  The impact of two-product joint lifecycles on capacity planning of remanufacturing networks , 2010, Eur. J. Oper. Res..

[72]  Surendra M. Gupta,et al.  End-of-Life Decisions Using Product Life Cycle Information , 2008 .

[73]  Eddy Bajic,et al.  RFID in operations and supply chain management: research and applications , 2008 .

[74]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[75]  Surendra M. Gupta,et al.  Linear physical programming for solving the multi-criteria disassembly-to-order problem under stochastic yields, limited supply, and quantity discount , 2010 .