Research and applications of viscoelastic vibration damping materials: A review

Abstract This paper presents a comprehensive review of the various research methods and theory calculation models that are employed in engineering to study the static and dynamic vibration characteristics of viscoelastic damping material (VDM) formed structures. The review classifies of traditional VDMs by their physical properties, application fields and calculation methods. A thorough description and comparison is performed between conventional and improved methods and, their applicability, and the advantages and disadvantages of each calculation theory in engineering structures that contain VDM are sequentially illustrated. VDM mathematical models in previous studies are then described and compared. Finally, the future development of VDM and its composites are discussed. The main objective of this paper is to serve the interests of researchers and engineers involved in the analysis and design of structures whose vibration must be reduced by VDM.

[1]  I. Hodge,et al.  Physical Aging in Polymer Glasses , 1995, Science.

[2]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[3]  Bertrand Lods,et al.  Boltzmann Model for Viscoelastic Particles: Asymptotic Behavior, Pointwise Lower Bounds and Regularity , 2013, 1306.1379.

[4]  Yao Koutsawa,et al.  Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials , 2009 .

[5]  N. Ganesan,et al.  Finite element free vibration analysis of damped stiffened panels , 1986 .

[6]  Paulo A.F. Martins,et al.  A finite element model for the analysis of viscoelastic sandwich structures , 2011 .

[7]  Rajendra Singh,et al.  Experimental study of hydraulic engine mounts using multiple inertia tracks and orifices: Narrow and broad band tuning concepts , 2012 .

[8]  Dimitris A. Saravanos,et al.  High‐order layerwise finite element for the damped free‐vibration response of thick composite and sandwich composite plates , 2009 .

[9]  Usik Lee,et al.  Dynamics of two-layer smart composite Timoshenko beams: Frequency domain spectral element analysis , 2015 .

[10]  Shyh-Chin Huang,et al.  The frequency response and damping effect of three-layer thin shell with viscoelastic core , 2000 .

[11]  D. J. McTavish,et al.  Shock Response of a Damped Linear Structure Using GHM Finite Elements , 2003 .

[12]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[13]  Chunhui Yang,et al.  Recent developments in finite element analysis for laminated composite plates , 2009 .

[14]  M. S. Nerantzaki,et al.  Analysis of inhomogeneous anisotropic viscoelastic bodies described by multi-parameter fractional differential constitutive models , 2011, Comput. Math. Appl..

[15]  K. Rajagopal A note on a reappraisal and generalization of the Kelvin–Voigt model , 2009 .

[16]  Li-Qun Chen,et al.  Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid model , 2009 .

[17]  T. Pritz,et al.  VERIFICATION OF LOCAL KRAMERS–KRONIG RELATIONS FOR COMPLEX MODULUS BY MEANS OF FRACTIONAL DERIVATIVE MODEL , 1999 .

[18]  Giuseppe Muscolino,et al.  A numerical method for the time‐domain dynamic analysis of buildings equipped with viscoelastic dampers , 2011 .

[19]  Adrian P. Mouritz,et al.  Review of advanced composite structures for naval ships and submarines , 2001 .

[20]  M. D. Sciuva,et al.  BENDING, VIBRATION AND BUCKLING OF SIMPLY SUPPORTED THICK MULTILAYERED ORTHOTROPIC PLATES: AN EVALUATION OF A NEW DISPLACEMENT MODEL , 1986 .

[21]  X. Q. Zhou,et al.  Simplified-super-element-method for analyzing free flexural vibration characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material , 2015 .

[22]  Haitao Qi,et al.  On accelerated flows of a viscoelastic fluid with the fractional Burgers’ model , 2009 .

[23]  Ronald L. Bagley,et al.  Power law and fractional calculus model of viscoelasticity , 1989 .

[24]  Vassilis Kostopoulos,et al.  A new method for the determination of viscoelastic properties of composite laminates: a mixed analytical–experimental approach , 2003 .

[25]  José Herskovits,et al.  Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data , 2002 .

[26]  Jean-Marc Bourinet,et al.  A dynamic stiffness analysis of damped tubes filled with granular materials , 1999 .

[27]  C. Zener Elasticity and anelasticity of metals , 1948 .

[28]  Dahsin Liu,et al.  An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Composite Laminates , 1992 .

[29]  Raghu Echempati,et al.  Dynamic analysis and damping of composite structures embedded with viscoelastic layers , 1997 .

[30]  Chengkuo Lee,et al.  Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms , 2010 .

[31]  R. Gibson,et al.  VIBRATIONS OF CARBON NANOTUBES AND THEIR COMPOSITES: A REVIEW , 2007 .

[32]  Regis V. Schmitt,et al.  Design of Elastomeric Vibration Isolation Mounting Systems for Internal Combustion Engines , 1976 .

[33]  D. J. Mead,et al.  Loss factors and resonant frequencies of encastré damped sandwich beams , 1970 .

[34]  C. M. Mota Soares,et al.  Finite element model for damping optimization of viscoelastic sandwich structures , 2013, Adv. Eng. Softw..

[35]  N. Jalili Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems , 2009 .

[36]  Gian Luca Ghiringhelli,et al.  Improvement of structures vibroacoustics by widespread embodiment of viscoelastic materials , 2013 .

[37]  Harry H. Hilton,et al.  Dynamic Responses of Plates With Viscoelastic Free Layer Damping Treatment , 1996 .

[38]  Mikael Enelund,et al.  Time domain modeling of damping using anelastic displacement fields and fractional calculus , 1999 .

[39]  Zhike Peng,et al.  The effects of nonlinearity on the output frequency response of a passive engine mount , 2008 .

[40]  Wen-Bin Shangguan,et al.  Experimental study and simulation of a hydraulic engine mount with fully coupled fluid–structure interaction finite element analysis model , 2004 .

[41]  Huu-Tai Thai,et al.  A simple first-order shear deformation theory for laminated composite plates , 2013 .

[42]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields , 1990 .

[43]  J. N. Reddy,et al.  Layer-wise shell theory for postbuckling of laminated circular cylindrical shells , 1992 .

[44]  Zhu Liang,et al.  Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester , 2012 .

[45]  T. Pritz Five-parameter fractional derivative model for polymeric damping materials , 2003 .

[46]  R. A. Shenoi,et al.  Dynamic analysis of composite sandwich plates with damping modelled using high-order shear deformation theory , 2001 .

[47]  Shengrong Yang,et al.  An investigation of the friction and wear behaviors of micrometer copper particle‐ and nanometer copper particle‐filled polyoxymethylene composites , 2000 .

[48]  Conor D. Johnson,et al.  Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers , 1981 .

[49]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[50]  Jacob Aboudi,et al.  Dynamic response of viscoelastic laminated plates , 1989 .

[51]  J. B. Kosmatka,et al.  Damping Analysis of Composite Plates with Zig-Zag Triangular Element , 2002 .

[52]  J. C. Sun,et al.  Predictions of total loss factors of structures, part II: Loss factors of sand-filled structure , 1986 .

[53]  Naoyuki Watanabe,et al.  Thermomechanical properties and stress analysis of 3-D textile composites by asymptotic expansion homogenization method , 2014 .

[54]  X. Q. Zhou,et al.  Band gap characteristics of periodically stiffened-thin-plate based on center-finite-difference-method , 2014 .

[55]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[56]  Anthony N. Palazotto,et al.  Kelvin-Voigt versus fractional derivative model as constitutive relations for viscoelastic materials , 1995 .

[57]  Naoyuki Watanabe,et al.  A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction , 2014 .

[58]  M. Yan,et al.  Governing Equations for Vibrating Constrained-Layer Damping Sandwich Plates and Beams , 1972 .

[59]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[60]  Alessandro Fasana,et al.  RAYLEIGH-RITZ ANALYSIS OF SANDWICH BEAMS , 2001 .

[61]  Manoj Kumar,et al.  Experimental validation of modal strain energies based damage identification method for a composite sandwich beam , 2009 .

[62]  L. S. Burn,et al.  Creep modeling of ABS pipes at variable temperature , 2000 .

[63]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[64]  Usik Lee,et al.  Guided waves in a Timoshenko beam with a bonded composite patch: Frequency domain spectral element modeling and analysis , 2014 .

[65]  Alexandre Loredo,et al.  Vibration reduction on city buses: Determination of optimal position of engine mounts , 2010 .

[66]  Youhe Zhou,et al.  Dynamic characteristics of traveling waves for a rotating laminated circular plate with viscoelastic core layer , 2011 .

[67]  U. Lee Spectral Element Method in Structural Dynamics , 2009 .

[68]  Daniel J. Inman,et al.  Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping , 2013 .

[69]  Alexander L. Kalamkarov,et al.  Asymptotic homogenization modeling of thin composite network structures , 2007 .

[70]  Amr M. Baz,et al.  Comparison between finite element formulations of active constrained layer damping using classical and layer-wise laminate theory , 2001 .

[71]  Zaidi Mohd Ripin,et al.  Dynamic stiffness and loss factor measurement of engine rubber mount by impact test , 2011 .

[72]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .

[73]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[74]  S.M.R. Khalili,et al.  Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer , 2014 .

[75]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[76]  Daniel Ambrosini,et al.  Dynamic response of composites sandwich plates with carbon nanotubes subjected to blast loading , 2013 .

[77]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[78]  D. Roy Mahapatra,et al.  Estimation of Dynamic Fracture Parameters in a Transverse Cracked Composite Beam using a Simplified Diagnostic Wave Propagation Model , 2006 .

[79]  J. K. Dutt,et al.  Dynamics of a viscoelastic rotor shaft using augmenting thermodynamic fields—A finite element approach , 2008 .

[80]  R C Haddon,et al.  Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[81]  Yeoshua Frostig,et al.  High‐Order Theory for Sandwich‐Beam Behavior with Transversely Flexible Core , 1992 .

[82]  M. Korn,et al.  Incorporation of attenuation into time-domain computations of seismic wave fields , 1987 .

[83]  Christian Licht,et al.  Thin linearly viscoelastic Kelvin–Voigt plates , 2013 .

[84]  Y. Yiu,et al.  Substructure and finite element formulation for linear viscoelastic materials , 1994 .

[85]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[86]  A. Isayev,et al.  Rheology: Concepts, Methods and Applications , 2005 .

[87]  Amr M. Baz,et al.  Mechanical filtering characteristics of passive periodic engine mount , 2010 .

[88]  J. Reddy,et al.  THEORIES AND COMPUTATIONAL MODELS FOR COMPOSITE LAMINATES , 1994 .

[89]  Michael W. Sayers,et al.  A Simulation Graphical User Interface for Vehicle Dynamics Models , 1995 .

[90]  J. N. Reddy,et al.  Modeling of delamination in composite laminates using a layer-wise plate theory , 1991 .

[91]  Yoshihiro Narita,et al.  Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions , 2013 .

[92]  Ryan L. Harne,et al.  Development and testing of a dynamic absorber with corrugated piezoelectric spring for vibration control and energy harvesting applications , 2013 .

[93]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[94]  Ilwook Park,et al.  Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method , 2013 .

[95]  R. Ditaranto Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams , 1965 .

[96]  Jinhao Qiu,et al.  Vibration damping as a result of piezoelectric energy harvesting , 2011 .

[97]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[98]  K. H. Lee,et al.  An improved zig-zag model for the bending of laminated composite shells , 1990 .

[99]  J. Berthelot,et al.  Damping analysis of laminated beams and plates using the Ritz method , 2006 .

[100]  Annie Ross,et al.  Influence of partial constrained layer damping on the bending wave propagation in an impacted viscoelastic sandwich , 2013 .

[101]  George E. Blandford,et al.  Piezothermoelastic composite plate analysis using first-order shear deformation theory , 1994 .

[102]  Hamidreza Eipakchi,et al.  Natural frequency and critical speed determination of an axially moving viscoelastic beam , 2013 .

[103]  Chang-Jun Cheng,et al.  Dynamical behaviors of nonlinear viscoelastic thick plates with damage , 2004 .

[104]  Usik Lee,et al.  Spectral element analysis for an axially moving viscoelastic beam , 2004 .

[105]  Grigory Panasenko,et al.  Homogenization of thermo-viscoelastic Kelvin–Voigt model , 2007 .

[106]  Daniel J. Inman,et al.  Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration , 2012 .

[107]  C. M. Mota Soares,et al.  Damping optimization of viscoelastic laminated sandwich composite structures , 2009 .

[108]  Singiresu S. Rao,et al.  Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey , 1994 .

[109]  André Preumont,et al.  Active damping by a local force feedback with piezoelectric actuators , 1991 .

[110]  Michael C. Constantinou,et al.  Fractional‐Derivative Maxwell Model for Viscous Dampers , 1991 .

[111]  A. Araújo,et al.  A Viscoelastic Sandwich Finite Element Model for the Analysis of Passive, Active and Hybrid Structures , 2010 .

[112]  Lien-Wen Chen,et al.  Vibration and stability of rotating polar orthotropic sandwich annular plates with a viscoelastic core layer , 2007 .

[113]  M. V. Voinova,et al.  Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach , 1998, cond-mat/9805266.

[114]  J.-F. He,et al.  A finite-element analysis of viscoelastically damped sandwich plates , 1992 .

[115]  S. O. Reza Moheimani,et al.  A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers , 2003, IEEE Trans. Control. Syst. Technol..

[116]  Mojtaba Azhari,et al.  Static and instability analysis of moderately thick viscoelastic plates using a fully discretized nonlinear finite strip formulation , 2014 .

[117]  N. Ganesan,et al.  Finite element analysis of cylindrical shells with a constrained viscoelastic layer , 1994 .

[118]  Ayech Benjeddou,et al.  Advances in Hybrid Active-Passive Vibration and Noise Control Via Piezoelectric and Viscoelastic Constrained Layer Treatments , 2001 .

[119]  Marina V. Shitikova,et al.  Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times , 2010, Comput. Math. Appl..

[120]  Mauricio Sepúlveda,et al.  Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect , 2013 .

[121]  Annie Ross,et al.  Transient response of a plate with partial constrained viscoelastic layer damping , 2013 .

[122]  Domingos A. Rade,et al.  Sensitivity analysis of frequency response functions of composite sandwich plates containing viscoelastic layers , 2010 .

[123]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[124]  D. J. Mead The Effect of a Damping Compound on Jet‐Efflux Excited Vibrations , 1960 .

[125]  Lin-Hung Chen,et al.  Vibration attenuation of a cylindrical shell with constrained layer damping strips treatment , 2001 .

[126]  E. E. Ungar,et al.  Loss Factors of Viscoelastic Systems in Terms of Energy Concepts , 1962 .

[127]  C. Davis,et al.  A modal strain energy approach to the prediction of resistively shunted piezoceramic damping , 1995 .

[128]  Hualing Chen,et al.  A study on the damping characteristics of laminated composites with integral viscoelastic layers , 2006 .

[129]  Jihong Wen,et al.  Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches , 2012 .

[130]  Bo-Ha Lee,et al.  Model based feed-forward control of electromagnetic type active control engine mount system = 전자석 구동형 능동 엔진 마운트의 모델 기반 제어 , 2009 .

[131]  Kim Lau Nielsen,et al.  Numerical studies of shear damped composite beams using a constrained damping layer , 2008 .

[132]  V. Balamurugan,et al.  Finite Element Formulation and Active Vibration Control Study on Beams Using Smart Constrained Layer Damping (scld) Treatment , 2002 .

[133]  Gaël Chevallier,et al.  A new identification method of viscoelastic behavior: Application to the generalized Maxwell model , 2011 .

[134]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[135]  Arcanjo Lenzi The use of damping material in industrial machines , 1985 .

[136]  Gerald Kress,et al.  Optimization of segmented constrained layer damping with mathematical programming using strain energy analysis and modal data , 2010 .

[137]  Perngjin F. Pai,et al.  A new look at shear correction factors and warping functions of anisotropic laminates , 1995 .

[138]  Erasmo Carrera,et al.  Mixed layer-wise models for multilayered plates analysis , 1998 .

[139]  Ranglin Fan,et al.  Fixed points on the nonlinear dynamic properties of hydraulic engine mounts and parameter identification method: Experiment and theory , 2007 .

[140]  V. Balamurugan,et al.  Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators , 2003 .

[141]  Marco Di Sciuva,et al.  Multilayered anisotropic plate models with continuous interlaminar stresses , 1992 .

[142]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[143]  D. L. Palumbo,et al.  Damping of Structural Vibration Using Lightweight Granular Materials , 2009 .

[144]  José M. Carcione,et al.  3-D Wave simulation in anelastic media using the Kelvin-Voigt constitutive equation , 2004 .

[145]  Baohua Ji,et al.  Mechanical properties of nanostructure of biological materials , 2004 .

[146]  Mingwang Shao,et al.  Silicon nanowires nanogenerator based on the piezoelectricity of alpha-quartz. , 2013, Nanoscale.

[147]  Y. Soucy,et al.  Prediction and measurement of modal damping factors for viscoelasticspace structures , 1992 .

[148]  Marcelo A. Trindade Experimental analysis of active-passive vibration control using viscoelastic materials and extension and shear piezoelectric actuators , 2011 .

[149]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[150]  Celeste M.C. Pereira,et al.  The effect of carbon nanotubes on viscoelastic behaviour of biomedical grade ultra-high molecular weight polyethylene , 2013 .

[151]  J. C. Sun,et al.  Prediction of total loss factors of structures Part III: Effective loss factors in quasi-transient conditions , 1986 .

[152]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shear , 1996 .

[153]  T. Kapitaniak,et al.  Kelvin–Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web , 2002 .

[154]  Alexander L. Kalamkarov,et al.  Asymptotic homogenization modeling and analysis of effective properties of smart composite reinforced and sandwich shells , 2007 .

[155]  Hongli An,et al.  A class of blowup and global analytical solutions of the viscoelastic Burgersʼ equations , 2013 .

[156]  Kuldeep Lonkar,et al.  Modeling of piezo-induced ultrasonic wave propagation in composite structures using layered solid spectral element , 2014 .

[157]  Ji-Hwan Kim,et al.  Nonlinear vibration of viscoelastic laminated composite plates , 2002 .

[158]  Singiresu S Rao,et al.  Recent Advances in Sensing and Control of Flexible Structures Via Piezoelectric Materials Technology , 1999 .

[159]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[160]  L. Azrar,et al.  Forced harmonic response of viscoelastic structures by an asymptotic numerical method , 2009 .

[161]  K. Dovstam,et al.  Augmented Hooke's law in frequency domain. A three dimensional, material damping formulation , 1995 .

[162]  Daniel J. Inman,et al.  Modeling active constrained-layer damping using Golla-Hughes-McTavish approach , 1995, Smart Structures.

[163]  G. T. Zheng,et al.  The Biot Model and Its Application in Viscoelastic Composite Structures , 2007 .

[164]  Tae June Kang,et al.  The viscoelastic bending stiffness of fiber-reinforced composite Ilizarov C-rings , 2001 .

[165]  Jin Zhu,et al.  Dynamic Analysis of an Engine Chassis Mount Bracket Using the Finite Element Method , 1988 .

[166]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[167]  S. O. Reza Moheimani,et al.  Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control , 2005, IEEE Transactions on Control Systems Technology.

[168]  M. Di Sciuva,et al.  A general quadrilateral multilayered plate element with continuous interlaminar stresses , 1993 .

[169]  Fernando Cortés,et al.  Structural vibration of flexural beams with thick unconstrained layer damping , 2008 .

[170]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[171]  Alexander L. Kalamkarov,et al.  An asymptotic homogenization model for smart 3D grid-reinforced composite structures with generally orthotropic constituents , 2009 .

[172]  Mohan D. Rao,et al.  Analysis of modal parameters of adhesively bonded double-strap joints by the modal strain energy method , 1996 .

[173]  Il-Kwon Oh,et al.  Dynamic characteristics of cylindrical hybrid panels containing viscoelastic layer based on layerwise mechanics , 2007 .

[174]  Ronald L. Poveda,et al.  Viscoelastic properties of carbon nanofiber reinforced multiscale syntactic foam , 2014 .

[175]  X. Q. Zhou,et al.  Asymptotic analysis on flexural dynamic characteristics for a sandwich plate with periodically perforated viscoelastic damping material core , 2015 .

[176]  Sami F. Masri,et al.  RESPONSE OF IMPACT DAMPERS WITH GRANULAR MATERIALS UNDER RANDOM EXCITATION , 1996 .

[177]  A. Su,et al.  Damping behaviour of dynamically cured butyl rubber/polypropylene blends , 1994 .

[178]  R. A. Shenoi,et al.  Progressive damage analysis of tee joints with viscoelastic inserts , 2001 .

[179]  Mohamed Bader Boubaker,et al.  Finite element simulation of the slumping process of a glass plate using 3D generalized viscoelastic Maxwell model , 2014 .

[180]  K. M. Liew,et al.  Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review , 2015 .

[181]  Humberto Breves Coda,et al.  A boundary element methodology for viscoelastic analysis. Part II without cells , 2007 .

[182]  Sondipon Adhikari,et al.  Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams , 2013 .

[183]  K. Chandrashekhara,et al.  Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach , 1993 .

[184]  Marina V. Shitikova,et al.  Application of fractional-derivative standard linear solid model to impact response of human frontal bone , 2011 .

[185]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[186]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[187]  D. Logan A First Course in the Finite Element Method , 2001 .

[188]  Sritawat Kitipornchai,et al.  Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates , 2014 .

[189]  N. Marcovich,et al.  Analysis of the creep behavior of polypropylene-woodflour composites , 2004 .

[190]  Brian R. Mace,et al.  Arbitrary active constrained layer damping treatments on beams: Finite element modelling and experimental validation , 2006 .

[191]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[192]  Mustafa Arafa,et al.  Dynamics of active piezoelectric damping composites , 2000 .

[193]  Daniel Granger,et al.  Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: Experimental and numerical results , 2009 .

[194]  Dahsin Liu,et al.  Zigzag theory for composite laminates , 1995 .

[195]  Ole Thybo Thomsen,et al.  High-order free vibration of sandwich panels with a flexible core , 2004 .

[196]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[197]  Masoud Frounchi Simulation of viscoelastic behavior of glassy polymers , 1997 .

[198]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[199]  Takao Yamaguchi,et al.  Damped vibration analysis using finite element method with approximated modal damping for automotive double walls with a porous material , 2009 .

[200]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[201]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[202]  Daniel J. Inman,et al.  Hybrid damping models using the Golla-Hughes-McTavish method with internally balanced model reduction and output feedback , 2000 .

[203]  Markus Rupp,et al.  Experimental and analytical study of secondary path variations in active engine mounts , 2015 .

[204]  B. C. Nakra VIBRATION CONTROL IN MACHINES AND STRUCTURES USING VISCOELASTIC DAMPING , 1998 .

[205]  Doo-Ho Lee,et al.  Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs , 2009 .

[206]  Jean-François Ferrero,et al.  Dissipation mechanisms identification of soft hollow particle-dampers in honeycomb structures for micro-vibrations environment , 2009 .

[207]  K. H. Lee,et al.  An improved zig-zag model for the vibration of soft-cored unsymmetric sandwich beams , 1994 .

[208]  Alessandro Fasana,et al.  Finite element analysis of vibrating linear systems with fractional derivative viscoelastic models , 2007 .

[209]  Michael F. Shlesinger,et al.  Time‐Scale Invariance in Transport and Relaxation , 1991 .

[210]  Haitao Qi,et al.  Starting solutions for a viscoelastic fluid with fractional Burgers’ model in an annular pipe , 2010 .

[211]  W. M. Mansour,et al.  A Modified MSE Method for Viscoelastic Systems: A Weighted Stiffness Matrix Approach , 1995 .

[212]  Bor-Tsuen Wang,et al.  Damage detection of surface cracks in composite laminates using modal analysis and strain energy method , 2006 .

[213]  Marina V. Shitikova,et al.  The analysis of the impact response of a thin plate via fractional derivative standard linear solid model , 2011 .

[214]  Arash Montazeri,et al.  The effect of functionalization on the viscoelastic behavior of multi-wall carbon nanotube/epoxy composites , 2013 .

[215]  Jun Yang,et al.  Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles , 2009 .

[216]  Gary G. Tibbetts,et al.  Modeling and characterization of damping in carbon nanofiber/polypropylene composites , 2003 .

[217]  K. H. Lee,et al.  Static response of unsymmetric sandwich beams using an improved zig-zag model , 1993 .

[218]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[219]  R. A. Shenoi,et al.  Strength modelling in stiffened FRP structures with viscoelastic inserts for ocean structures , 2002 .

[220]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[221]  Liqun Chen,et al.  Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation , 2009 .

[222]  D.C.Ae. D.J. Mead The Effect of a Damping Compound on Jet‐Efflux Excited Vibrations: An Article in Two Parts Presenting Theory and Results of Experimental Investigation , 1960 .

[223]  A G Patwardhan,et al.  Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. , 1995, Journal of biomechanics.

[224]  Ging Long Lin,et al.  An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation , 2012 .

[225]  S. Solares,et al.  Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model , 2014, Beilstein journal of nanotechnology.

[226]  Mohan D. Rao,et al.  Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .

[227]  J. K. Dutt,et al.  Viscoelastic modelling of rotor—shaft systems using an operator-based approach , 2011 .

[228]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[229]  Hui Zheng,et al.  Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams , 2004 .

[230]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .

[231]  Ping Li,et al.  A rotation energy harvester employing cantilever beam and magnetostrictive/piezoelectric laminate transducer , 2011 .

[232]  Ole Thybo Thomsen,et al.  On the free vibration of sandwich panels with a transversely flexible and temperature-dependent core material – Part I: Mathematical formulation , 2009 .

[233]  Stephen C. Conlon,et al.  Broadband energy harvesting using acoustic black hole structural tailoring , 2014 .

[234]  Benjamin B. Choi,et al.  Numerical modeling methodology and experimental study for piezoelectric vibration damping control of rotating composite fan blades , 2013 .

[235]  M. A. Trindade,et al.  Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping , 2000 .

[236]  E. Carrera,et al.  A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates , 2013 .

[237]  Noritoshi Nakagawa,et al.  Dynamic Characteristics of Exhaust Hanger Composed of Rubber and Thin Metal Ring , 2006 .

[238]  Li Ma,et al.  Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers , 2013 .

[239]  D. Oguamanam,et al.  Forced harmonic response of sandwich plates with viscoelastic core using reduced-order model , 2013 .

[240]  Masato Saitoh,et al.  Lumped parameter models representing impedance functions at the end of a finite beam on a viscoelastic medium , 2012 .

[241]  Hassan Haddadpour,et al.  The effects of nonlinearities on the vibration of viscoelastic sandwich plates , 2014 .

[242]  Jacob Aboudi,et al.  Postbuckling analysis of viscoelastic laminated plates using higher-order theory , 1991 .

[243]  George A. Lesieutre,et al.  Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties , 1992 .

[244]  Edward C. Smith,et al.  Thermomechanical modeling of elastomeric materials , 1996 .

[245]  Walter Sextro,et al.  Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments , 2013 .

[246]  Marco Di Sciuva,et al.  Development of an anisotropic, multilayered, shear-deformable rectangular plate element , 1985 .

[247]  Navin Kumar,et al.  Experimental study on vibration and damping of curved panel treated with constrained viscoelastic layer , 2010 .

[248]  J. Berthelot,et al.  Damping Analysis of Orthotropic Composites with Interleaved Viscoelastic Layers: Modeling , 2006 .

[249]  D. H. Robbins,et al.  Analysis of piezoelectrically actuated beams using a layer-wise displacement theory , 1991 .

[250]  T. Chou,et al.  Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization , 2002 .

[251]  R. A. S. Moreira,et al.  Dimensionless analysis of constrained damping treatments , 2013 .

[252]  Taehyun Shim,et al.  Controlled equilibrium mounts for aircraft engine isolation , 2006 .

[253]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[254]  Usik Lee,et al.  A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics , 1996 .

[255]  C. Marais,et al.  Analysis and modeling of the creep behavior of the thermostable PMR-15 polyimide , 1998 .

[256]  H. Hua,et al.  Viscoelastic Behavior Analysis and Application of the Fractional Derivative Maxwell Model , 2007 .

[257]  John T. Katsikadelis,et al.  Post-buckling analysis of viscoelastic plates with fractional derivative models , 2010 .

[258]  George A. Lesieutre,et al.  Vibration damping and control using shunted piezoelectric materials , 1998 .

[259]  Jerry H. Ginsberg,et al.  Fundamental Tests of Two Modal Strain Energy Methods , 1996 .

[260]  Jun Wang,et al.  Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model , 2014 .

[261]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[262]  Amr M. Baz Optimization of energy dissipation characteristics of active constrained layer damping , 1997 .

[263]  M. C. Ray,et al.  Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite , 2009 .

[264]  Mohan D. Rao,et al.  Measurement of Dynamic Parameters of Automotive Exhaust Hangers , 2001 .

[265]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[266]  Arthur W. Lees,et al.  Time domain analysis of a viscoelastic rotor using internal variable models , 2010 .

[267]  Wei-Ren Chen,et al.  Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvin–Voigt damping , 2014 .

[268]  Daniel J. Inman,et al.  Vibration Control through Passive Constrained Layer Damping and Active Control , 1997 .

[269]  R. Moreira,et al.  Viscoelastic Damping Technologies-Part I: Modeling and Finite Element Implementation ⋆ , 2010 .

[270]  Maenghyo Cho,et al.  Efficient higher-order zig-zag theory for viscoelastic laminated composite plates , 2015 .

[271]  D. Roy Mahapatra,et al.  Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures , 2007 .

[272]  V. Litvinov,et al.  Spectroscopy of rubbers and rubbery materials , 2002 .

[273]  E. J. Richards,et al.  Prediction of total loss factors of structures, I: Theory and experiments , 1985 .

[274]  Liangchi Zhang,et al.  Novel behaviour of friction and wear of epoxy composites reinforced by carbon nanotubes , 2006 .

[275]  J Fisher,et al.  A study of the wear resistance of three types of clinically applied UHMWPE for total replacement hip prostheses. , 1999, Biomaterials.

[276]  Rikio Yokota,et al.  Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites , 2004 .

[277]  Evangelos Papadopoulos,et al.  Low-energy impact response of composite and sandwich composite plates with piezoelectric sensory layers , 2014 .

[278]  Lien-Wen Chen,et al.  Vibration and damping analysis of a three-layered composite annular plate with a viscoelastic mid-layer , 2002 .

[279]  A. Macías-García,et al.  Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model , 2002 .

[280]  Dahsin Liu,et al.  An Overall View of Laminate Theories Based on Displacement Hypothesis , 1996 .

[281]  George A. Lesieutre,et al.  Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields , 1996 .

[282]  Ramin Sedaghati,et al.  Linear and nonlinear vibration analysis of sandwich cylindrical shell with constrained viscoelastic core layer , 2012 .

[283]  Kwansoo Chung,et al.  Development of viscoelastic/rate-sensitive-plastic constitutive law for fiber-reinforced composites and its applications. Part I: Theory and material characterization , 2009 .

[284]  C. Friedrich Relaxation and retardation functions of the Maxwell model with fractional derivatives , 1991 .

[285]  Kyoung Kwan Ahn,et al.  A new type of semi-active hydraulic engine mount using controllable area of inertia track , 2010 .

[286]  Rosalin Sahoo,et al.  A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates , 2014 .

[287]  Mohan D. Rao,et al.  Dynamic characterization of automotive exhaust isolators , 2004 .

[288]  Nagi G. Naganathan,et al.  A literature review of automotive vehicle engine mounting systems , 2001 .

[289]  Ole Thybo Thomsen,et al.  On the free vibration of sandwich panels with a transversely flexible and temperature dependent core material – Part II: Numerical study , 2009 .

[290]  G. Wang Analyses of sandwich beams and plates with viscoelastic cores , 2001 .

[291]  José Herskovits,et al.  Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates , 2010 .

[292]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[293]  Humberto Breves Coda,et al.  A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by the boundary element method , 2003 .

[294]  Chung-Ha Suh,et al.  Dynamic Simulation of Engine-Mount Systems , 1997 .

[295]  R. Bagley,et al.  Applications of Generalized Derivatives to Viscoelasticity. , 1979 .

[296]  S. A. Fazelzadeh,et al.  Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium , 2013 .

[297]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[298]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[299]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[300]  M. S. Nerantzaki,et al.  Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models , 2012 .

[301]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[302]  R. Lewandowski,et al.  Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers , 2010 .

[303]  Mojtaba Azhari,et al.  Static analysis and buckling of viscoelastic plates by a fully discretized nonlinear finite strip method using bubble functions , 2013 .

[304]  E. Carrera Layer-Wise Mixed Models for Accurate Vibrations Analysis of Multilayered Plates , 1998 .

[305]  M. Ghayesh Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance , 2011 .

[306]  S. Hyder Ali Muttaqi Shah Unsteady flows of a viscoelastic fluid with the fractional Burgers’ model , 2010 .

[307]  Alexander G. Kolpakov,et al.  A new asymptotic model for a composite piezoelastic plate , 2001 .

[308]  W. Cady,et al.  Piezoelectricity : an introduction to the theory and applications of electromechanical phenomena in crystals , 1946 .