The SPHINX M-dwarf Spectral Grid. I. Benchmarking New Model Atmospheres to Derive Fundamental M-dwarf Properties

About 70%–80% of stars in our solar and Galactic neighborhood are M dwarfs. They span a range of low masses and temperatures relative to solar-type stars, facilitating molecule formation throughout their atmospheres. Standard stellar atmosphere models primarily designed for FGK stars face challenges when characterizing broadband molecular features in spectra of cool stars. Here, we introduce SPHINX—a new 1D self-consistent radiative–convective thermochemical equilibrium chemistry model grid of atmospheres and spectra for M dwarfs in low resolution (R ∼ 250). We incorporate the latest precomputed absorption cross sections with pressure broadening for key molecules dominant in late-K, early/main-sequence-M stars. We then validate our grid models by determining fundamental properties (T eff, log g, [M/H], radius, and C/O) for 10 benchmark M+G binary stars with known host metallicities and 10 M dwarfs with interferometrically measured angular diameters. Incorporating the Gaussian process inference tool Starfish, we account for correlated and systematic noise in low-resolution (spectral stitching of SpeX, SNIFS, and STIS) observations and derive robust estimates of fundamental M-dwarf atmospheric parameters. Additionally, we assess the influence of photospheric heterogeneity on inferred [M/H] and find that it could explain some deviations from observations. We also probe whether the adopted convective mixing length parameter influences inferred radii, effective temperature, and [M/H] and again find that may explain discrepancies between interferometric observations and model-derived parameters for cooler M dwarfs. Mainly, we show the unique strength in leveraging broadband molecular absorption features occurring in low-resolution M dwarf spectra and demonstrate the ability to improve constraints on fundamental properties of exoplanet hosts and brown-dwarf companions.

[1]  Michael C. Liu,et al.  A Uniform Retrieval Analysis of Ultra-cool Dwarfs. IV. A Statistical Census from 50 Late-T Dwarfs , 2022, The Astrophysical Journal.

[2]  T. Nordlander,et al.  Chemical Properties of the Local Disk and Halo. II. Abundances of 3745 M Dwarfs and Subdwarfs from Improved Model Fitting of Low-resolution Spectra , 2022, The Astrophysical Journal.

[3]  D. A. García-Hernández,et al.  Detailed Chemical Abundances for a Benchmark Sample of M Dwarfs from the APOGEE Survey , 2022, The Astrophysical Journal.

[4]  Joaquín B. Ordieres Meré,et al.  Metallicities in M dwarfs: Investigating different determination techniques , 2021, Astronomy & Astrophysics.

[5]  J. Fortney,et al.  A unique hot Jupiter spectral sequence with evidence for compositional diversity , 2021, Nature Astronomy.

[6]  M. Tsantaki,et al.  Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. IV. Carbon and C/O ratios for Galactic stellar populations and planet hosts , 2021, Astronomy & Astrophysics.

[7]  A. Meisner,et al.  Ross 19B: An Extremely Cold Companion Discovered via the Backyard Worlds: Planet 9 Citizen Science Project , 2021, The Astrophysical Journal.

[8]  Adam J. R. W. Smith,et al.  The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.

[9]  Michael C. Liu,et al.  Uniform Forward-modeling Analysis of Ultracool Dwarfs. II. Atmospheric Properties of 55 Late-T Dwarfs , 2021, The Astrophysical Journal.

[10]  M. Marley,et al.  EXOPLINES: Molecular Absorption Cross-section Database for Brown Dwarf and Giant Exoplanet Atmospheres , 2021, The Astrophysical Journal Supplement Series.

[11]  Michael C. Liu,et al.  Uniform Forward-modeling Analysis of Ultracool Dwarfs. I. Methodology and Benchmarking , 2020, The Astrophysical Journal.

[12]  T. Henry,et al.  The Solar Neighborhood. XLVII. Comparing M-dwarf Models with Hubble Space Telescope Dynamical Masses and Spectroscopy , 2020, The Astronomical Journal.

[13]  Colleen M. Cleary,et al.  Retrieval of SDSS J1416+1348AB. , 2020, 2010.01224.

[14]  Laura K. McKemmish,et al.  The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2020 .

[15]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[16]  F. Spiegelman,et al.  A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets , 2020, Astronomy & Astrophysics.

[17]  F. Grupp,et al.  Impact of the convective mixing-length parameter α on stellar metallicity , 2020, Astronomy & Astrophysics.

[18]  D. A. García-Hernández,et al.  Stellar Characterization of M Dwarfs from the APOGEE Survey: A Calibrator Sample for M-dwarf Metallicities , 2020, The Astrophysical Journal.

[19]  M. Line,et al.  The Influence of Stellar Contamination on the Interpretation of Near-infrared Transmission Spectra of Sub-Neptune Worlds around M-dwarfs , 2019, The Astrophysical Journal.

[20]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[21]  R. P. Butler,et al.  The CARMENES search for exoplanets around M dwarfs , 2017, Astronomy & Astrophysics.

[22]  C. Helling,et al.  Dust in brown dwarfs and extra-solar planets , 2008, Astronomy & Astrophysics.

[23]  F. Spiegelman,et al.  New study of the line profiles of sodium perturbed by H2 , 2019, Astronomy & Astrophysics.

[24]  J. Patience,et al.  A Uniform Retrieval Analysis of Ultra-cool Dwarfs. III. Properties of Y Dwarfs , 2019, The Astrophysical Journal.

[25]  M. Line,et al.  The Influence of H2O Pressure Broadening in High-metallicity Exoplanet Atmospheres , 2018, The Astrophysical Journal.

[26]  Sarah Ballard,et al.  Predicted Number, Multiplicity, and Orbital Dynamics of TESS M-dwarf Exoplanets , 2018, The Astronomical Journal.

[27]  T. Barman,et al.  Ground- and Space-based Detection of the Thermal Emission Spectrum of the Transiting Hot Jupiter KELT-2Ab , 2018, The Astronomical Journal.

[28]  D. Apai,et al.  Retrieval of planetary and stellar properties in transmission spectroscopy with Aura , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  J. Tennyson,et al.  ExoMol molecular line lists XXX: a complete high-accuracy line list for water , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  L. Mugnier,et al.  The GJ 504 system revisited , 2018, Astronomy & Astrophysics.

[31]  T. Greene,et al.  Detection of Photospheric Features in the Near-infrared Spectrum of a Class 0 Protostar , 2018, The Astrophysical Journal.

[32]  Jacob L. Bean,et al.  Global Climate and Atmospheric Composition of the Ultra-hot Jupiter WASP-103b from HST and Spitzer Phase Curve Observations , 2018, The Astronomical Journal.

[33]  Yifan Zhou,et al.  The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra , 2018, The Astronomical Journal.

[34]  É. Artigau,et al.  2MASS J13243553+6358281 Is an Early T-type Planetary-mass Object in the AB Doradus Moving Group , 2018, 1802.00493.

[35]  H. Rix,et al.  Measuring Oxygen Abundances from Stellar Spectra without Oxygen Lines , 2018, The Astrophysical Journal.

[36]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[37]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[38]  C. Hill,et al.  ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH , 2017, 1710.06964.

[39]  Philip S. Muirhead,et al.  Supplementary online material for article, "A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite" , 2018 .

[40]  I. Hubeny Model atmospheres of sub-stellar mass objects , 2017, 1703.09283.

[41]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[42]  Konstantin Grankin,et al.  Placing the Spotted T Tauri Star LkCa 4 on an HR Diagram , 2017, 1701.06703.

[43]  Michael C. Liu,et al.  Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs , 2016, 1612.02809.

[44]  D. Apai,et al.  ACCESS I. AN OPTICAL TRANSMISSION SPECTRUM OF GJ 1214b REVEALS A HETEROGENEOUS STELLAR PHOTOSPHERE , 2016, 1612.00228.

[45]  Sebastian Bocquet,et al.  pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms) , 2016, J. Open Source Softw..

[46]  J. Manners,et al.  Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models , 2016, 1610.01389.

[47]  F. Spiegelman,et al.  K–H 2 line shapes for the spectra of cool brown dwarfs , 2016 .

[48]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[49]  M. Ireland,et al.  They are small worlds after all: revised properties of Kepler M dwarf stars and their planets , 2015, 1512.04437.

[50]  Astronomy,et al.  M dwarfs and the fraction of high carbon-to-oxygen stars in the solar neighbourhood , 2015, 1510.06985.

[51]  Kaisey S. Mandel,et al.  Starfish: Robust spectroscopic inference tools , 2015 .

[52]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[53]  P. C. Dawson,et al.  OPTICAL–NEAR-INFRARED PHOTOMETRIC CALIBRATION OF M DWARF METALLICITY AND ITS APPLICATION , 2015, 1502.07460.

[54]  M. Marley,et al.  On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets , 2014, 1410.6512.

[55]  M. Marley,et al.  GASEOUS MEAN OPACITIES FOR GIANT PLANET AND ULTRACOOL DWARF ATMOSPHERES OVER A RANGE OF METALLICITIES AND TEMPERATURES , 2014, 1409.0026.

[56]  F. Timmes,et al.  STELLAR ABUNDANCES IN THE SOLAR NEIGHBORHOOD: THE HYPATIA CATALOG , 2014, 1405.6719.

[57]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[58]  M. Asplund,et al.  Chemical Signatures Of Planets: Beyond Solar-Twins , 2013, 1310.8581.

[59]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[60]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[61]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[62]  J. Brewer,et al.  PROSPECTING IN LATE-TYPE DWARFS: A CALIBRATION OF INFRARED AND VISIBLE SPECTROSCOPIC METALLICITIES OF LATE K AND M DWARFS SPANNING 1.5 dex , 2012, 1211.4630.

[63]  Kelle L. Cruz,et al.  A SPECTROSCOPIC CATALOG OF THE BRIGHTEST (J < 9) M DWARFS IN THE NORTHERN SKY, , 2012, 1206.5991.

[64]  A. Vigan,et al.  Spectroscopy across the brown dwarf/planetary mass boundary I. Near-infrared JHK spectra , , 2012, 1201.3921.

[65]  Eric Gaidos,et al.  AN ALL-SKY CATALOG OF BRIGHT M DWARFS , 2011, 1108.2719.

[66]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[67]  J. Bochanski,et al.  THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. II. STATISTICAL PARALLAX ANALYSIS , 2011 .

[68]  Saurav Dhital,et al.  THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. I. DATA , 2011, 1101.1082.

[69]  David A. Golimowski,et al.  ERRATUM: “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD” (2010, AJ, 139, 2679) , 2010, 1004.4002.

[70]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[71]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[72]  F. Allard,et al.  A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres , 2008, 0809.3657.

[73]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[74]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[75]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[76]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[77]  S. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005, astro-ph/0504082.

[78]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[79]  Ralph C. Bohlin,et al.  Absolute Flux Distribution of the SDSS Standard BD +17°4708 , 2004 .

[80]  R. Pincus A First Course on Atmospheric Radiation , 2004 .

[81]  Christophe Bonnaud,et al.  SNIFS: a wideband integral field spectrograph with microlens arrays , 2003, SPIE Optical Systems Design.

[82]  Grant W. Petty,et al.  A First Course in Atmospheric Radiation , 2004 .

[83]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[84]  R. Rich,et al.  Spectroscopy of New High Proper Motion Stars in the Northern Sky. I. New Nearby Stars, New High-Velocity Stars, and an Enhanced Classification Scheme for M Dwarfs , 2002, astro-ph/0209284.

[85]  D. Ségransan,et al.  First radius measurements of very low mass stars with the VLTI , 2002, astro-ph/0211647.

[86]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[87]  R. Rich,et al.  New High Proper Motion Stars from the Digitized Sky Survey. II. Northern Stars with 05 yr−1 < μ < 20 yr−1 at High Galactic Latitudes , 2002, astro-ph/0207507.

[88]  H. C. Stempels,et al.  Detailed analysis of Balmer lines in cool dwarf stars , 2002, astro-ph/0201537.

[89]  Daniela Calzetti,et al.  Spectrophotometric Standards from the Far-Ultraviolet to the Near-Infrared: STIS and NICMOS Fluxes , 2001 .

[90]  F. Allard,et al.  The Limiting Effects of Dust in Brown Dwarf Model Atmospheres , 2001, astro-ph/0104256.

[91]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[92]  F. Allard,et al.  Spherically Symmetric Model Atmospheres for Low-Mass Pre-Main-Sequence Stars with Effective Temperatures between 2000 and 6800 K , 2000, astro-ph/0008464.

[93]  E. Gaidos A Cosmochemical Determinism in the Formation of Earth-like Planets , 2000 .

[94]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[95]  P. Hauschildt,et al.  MODEL ATMOSPHERES OF VERY LOW MASS STARS AND BROWN DWARFS , 1997 .

[96]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[97]  T. Guillot,et al.  Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B , 1996, Science.

[98]  Todd J. Henry,et al.  The solar neighborhood, 1: Standard spectral types (K5-M8) for northern dwarfs within eight parsecs , 1994 .

[99]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[100]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[101]  D. Osterbrock The Internal Structure of Red Dwarf Stars. , 1953 .