The origin of multicellularity in cyanobacteria

BackgroundCyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms.ResultsWe conducted and compared phylogenetic analyses of 16S rDNA sequences from a large sample of taxa representing the morphological and genetic diversity of cyanobacteria. We reconstructed ancestral character states on 10,000 phylogenetic trees. The results suggest that the majority of extant cyanobacteria descend from multicellular ancestors. Reversals to unicellularity occurred at least 5 times. Multicellularity was established again at least once within a single-celled clade. Comparison to the fossil record supports an early origin of multicellularity, possibly as early as the "Great Oxygenation Event" that occurred 2.45 - 2.22 billion years ago.ConclusionsThe results indicate that a multicellular morphotype evolved early in the cyanobacterial lineage and was regained at least once after a previous loss. Most of the morphological diversity exhibited in cyanobacteria today —including the majority of single-celled species— arose from ancient multicellular lineages. Multicellularity could have conferred a considerable advantage for exploring new niches and hence facilitated the diversification of new lineages.

[1]  J. Lamerdin,et al.  The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics , 2004, Photosynthesis Research.

[2]  P. Wincker,et al.  Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria , 2008, Genome Biology.

[3]  S. Hedges,et al.  A major clade of prokaryotes with ancient adaptations to life on land. , 2009, Molecular biology and evolution.

[4]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[5]  K. E. Cullen,et al.  Encyclopedia of life science , 2009 .

[6]  D. Kaiser,et al.  Building a multicellular organism. , 2001, Annual review of genetics.

[7]  J. Schopf,et al.  Evidence of Archean life: Stromatolites and microfossils , 2007 .

[8]  L. Staehelin,et al.  Observation of microplasmodesmata in both heterocyst-forming and non-heterocyst forming filamentous cyanobacteria by freeze-fracture electron microscopy , 1981, Archives of Microbiology.

[9]  C. Grovenor,et al.  Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone , 2008, Journal of the Geological Society.

[10]  A. Knoll,et al.  The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[12]  Yong Wang,et al.  An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.

[13]  J. Palmer,et al.  Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. , 1995, Molecular phylogenetics and evolution.

[14]  W. Martin,et al.  Out of Thin Air , 2008, Science.

[15]  L. Buss,et al.  The evolution of individuality , 1987 .

[16]  MARTIN E. Boraas,et al.  Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity , 1998, Evolutionary Ecology.

[17]  Raymond E. Goldstein,et al.  Motility, mixing, and multicellularity , 2007, Genetic Programming and Evolvable Machines.

[18]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[19]  P. Sánchez‐Baracaldo,et al.  Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen , 2010, Geobiology.

[20]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[21]  Donald R. Lowe,et al.  Photosynthetic microbial mats in the 3,416-Myr-old ocean , 2004, Nature.

[22]  E. Boekema,et al.  Photosystem I from the unusual cyanobacterium Gloeobacter violaceus , 2004, Photosynthesis Research.

[23]  N. Pace,et al.  Evolutionary relationships among cyanobacteria and green chloroplasts , 1988, Journal of bacteriology.

[24]  M. Pagel,et al.  Bayesian estimation of ancestral character states on phylogenies. , 2004, Systematic biology.

[25]  Schopf Jw Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic , 1994 .

[26]  S. Scheu,et al.  Reevolution of sexuality breaks Dollo's law , 2007, Proceedings of the National Academy of Sciences.

[27]  M. Watanabe,et al.  Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. , 2001, International journal of systematic and evolutionary microbiology.

[28]  W. Altermann,et al.  Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. , 1995, Precambrian research.

[29]  Enrique Flores,et al.  Mechanism of intercellular molecular exchange in heterocyst‐forming cyanobacteria , 2008, The EMBO journal.

[30]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[31]  G. Houliston,et al.  A Case of Reversal: The Evolution and Maintenance of Sexuals from Parthenogenetic Clones in Hieracium pilosella , 2003, International Journal of Plant Sciences.

[32]  Suzanne D. Golding,et al.  Microbial remains in some earliest Earth rocks: Comparison with a potential modern analogue , 2008 .

[33]  N. King,et al.  The unicellular ancestry of animal development. , 2004, Developmental cell.

[34]  M. Walsh,et al.  Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. , 1992, Precambrian research.

[35]  J. Sugiyama,et al.  Detection of Seven Major Evolutionary Lineages in Cyanobacteria Based on the 16S rRNA Gene Sequence Analysis with New Sequences of Five Marine Synechococcus Strains , 1999, Journal of Molecular Evolution.

[36]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[37]  Mark T. Holder,et al.  The Posterior and the Prior in Bayesian Phylogenetics , 2006 .

[38]  J. Damuth Evolution: Tempo and Mode , 2001 .

[39]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[40]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[41]  M. Suchard Stochastic Models for Horizontal Gene Transfer , 2005, Genetics.

[42]  J. Schopf,et al.  Alga-Like Fossils from the Early Precambrian of South Africa , 1967, Science.

[43]  J. Sugiyama,et al.  Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. , 2001, FEMS microbiology letters.

[44]  R. Grosberg,et al.  The Evolution of Multicellularity: A Minor Major Transition? , 2007 .

[45]  E. Charnov,et al.  ON IRREVERSIBLE EVOLUTION , 1985, Evolution; international journal of organic evolution.

[46]  E. Flores,et al.  Compartmentalized function through cell differentiation in filamentous cyanobacteria , 2010, Nature Reviews Microbiology.

[47]  J. Bonner The Evolution of Complexity by Means of Natural Selection , 1988 .

[48]  P. Sánchez‐Baracaldo,et al.  Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach , 2005 .

[49]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[50]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[51]  I. Paulsen,et al.  Ecological Genomics of Marine Picocyanobacteria , 2009, Microbiology and Molecular Biology Reviews.

[52]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[53]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[54]  Emmanuel Tannenbaum Selective advantage for multicellular replicative strategies: a two-cell example. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[56]  Jason Raymond,et al.  Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. , 2008, Molecular biology and evolution.

[57]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[58]  B. Rannala,et al.  Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. , 2004, Systematic biology.

[59]  R. Kopp,et al.  The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[61]  C. Marshall,et al.  Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils? , 2007 .

[62]  B. Danforth,et al.  Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). , 2003, Systematic biology.

[63]  W. P. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.01 (Build j28) , 2007 .

[64]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[65]  D. Wacey Early Life on Earth: A Practical Guide , 2009 .

[66]  R. Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality , 1999 .

[67]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[68]  R. Hazen,et al.  A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa) , 2006 .

[69]  F. Garcia-Pichel,et al.  Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau , 2001, Applied and Environmental Microbiology.

[70]  J. Peter Gogarten,et al.  PentaPlot: A software tool for the illustration of genome mosaicism , 2005, BMC Bioinformatics.

[71]  Xuhua Xia,et al.  Data Analysis in Molecular Biology and Evolution , 2002, Springer US.

[72]  Sven Becker,et al.  Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. , 2003, Microbiology.

[73]  G. Fox,et al.  Phylogenetic mapping of bacterial morphology. , 1998, Microbiology.

[74]  J. Schopf Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Schopf,et al.  Filamentous microfossils in the early proterozoic transvaal supergroup: their morphology, significance, and paleoenvironmental setting , 1987 .

[76]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Andrew Steele,et al.  Earth's Oldest (∼ 3.5 Ga) Fossils and the `Early Eden Hypothesis': Questioning the Evidence , 2004, Origins of life and evolution of the biosphere.

[78]  M. Litvaitis A molecular test of cyanobacterial phylogeny: inferences from constraint analyses , 2004, Hydrobiologia.

[79]  J. Tuomi Genetic heterogeneity within organisms and the evolution of individuality , 2004, Journal of evolutionary biology.

[80]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[81]  P. Mardulyn,et al.  Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera:Apinae). , 2001, Systematic biology.

[82]  David Wacey,et al.  A fresh look at the fossil evidence for early Archaean cellular life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[84]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[85]  M. Rausher,et al.  Genetic changes associated with floral adaptation restrict future evolutionary potential , 2004, Nature.

[86]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[87]  Uwe John,et al.  The Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications , 2010, PloS one.

[88]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[89]  A. Knoll,et al.  Archean microfossils showing cell division from the swaziland system of South Africa. , 1977, Science.

[90]  S. Stanley An ecological theory for the sudden origin of multicellular life in the late precambrian. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[91]  N. Butterfield Modes of pre-Ediacaran multicellularity , 2009 .

[92]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[93]  B. Danforth Evolution of sociality in a primitively eusocial lineage of bees , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Rouzaud,et al.  The 3.466 Ga "Kitty's Gap Chert," an early Archean microbial ecosystem , 2006 .

[95]  B. Kremer Mat-forming coccoid cyanobacteria from Early Silurian marine deposits of Sudetes, Poland , 2006 .

[96]  M. Mimuro,et al.  Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. , 2003, DNA research : an international journal for rapid publication of reports on genes and genomes.

[97]  L. Bohs,et al.  Ancient polymorphism reveals unidirectional breeding system shifts , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[99]  Taylor J. Maxwell,et al.  Loss and recovery of wings in stick insects , 2003, Nature.

[100]  Hervé Philippe,et al.  Eubacterial phylogeny based on translational apparatus proteins. , 2002, Trends in genetics : TIG.

[101]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[102]  Valentina Rossetti,et al.  The evolutionary path to terminal differentiation and division of labor in cyanobacteria. , 2010, Journal of theoretical biology.

[103]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[104]  S. Hedges,et al.  A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land , 2004, BMC Evolutionary Biology.

[105]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[106]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[107]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[108]  J. Bonner The origins of multicellularity , 1998 .

[109]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[110]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .

[111]  W. Glassley,et al.  The rise of continents¿An essay on the geologic consequences of photosynthesis , 2006 .

[112]  L. Hoffmann,et al.  Polyphyly of true branching cyanobacteria (Stigonematales). , 2004, International journal of systematic and evolutionary microbiology.

[113]  N. Butterfield,et al.  MACROEVOLUTION AND MACROECOLOGY THROUGH DEEP TIME , 2007 .

[114]  J. Kirschvink,et al.  Low-latitude glaciation in the Palaeoproterozoic era , 1997, Nature.

[115]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[116]  J. Bertrand-Sarfati,et al.  Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon , 1997 .

[117]  Matthew Hall,et al.  Direct selection on male attractiveness and female preference fails to produce a response , 2004, BMC Evolutionary Biology.

[118]  A. Yokota,et al.  The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. , 2003, The Journal of general and applied microbiology.

[119]  V. N. Sergeev The distribution of microfossil assemblages in Proterozoic rocks , 2009 .

[120]  T. Britton,et al.  Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. , 2003, Systematic biology.

[121]  L. Buss,et al.  Slime molds, ascidians, and the utility of evolutionary theory. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[122]  E. Flores,et al.  Is the periplasm continuous in filamentous multicellular cyanobacteria? , 2006, Trends in microbiology.