Layout optimization of thin sound-hard material to improve the far-field directivity properties of an acoustic horn

To improve the far-field directivity properties of a given mid-range acoustic horn, previously designed by shape optimization to exhibit almost ideal transmission properties in the frequency range 1.6–9.05 kHz, we apply layout optimization of thin sound-hard material in the interior of the horn. The purpose of the optimization is to place scattering material to prevent the sound intensity to increasingly be concentrated, with increasing frequency, along the horn axis. Absence or presence of thin sound-hard material is modeled by an equivalent surface transmission impedance, and the optimization algorithm determines the distribution of air or sound-hard material along a “ground structure” in the form of a grid inside the horn. The surface impedance is numerically handled using a newly developed finite-element formulation that allows exact enforcement of a vanishing impedance, corresponding to air, which would not be possible using a standard formulation. Horns provided with the optimized scatterers show a much improved angular coverage, compared to the initial configuration, with beam widths that exceed 60 ∘ uniformly over the operational frequency range, without destroying the good transmission properties of the initial horn.

[1]  Colin H. Hansen,et al.  Engineering Noise Control, Fourth Edition , 2010 .

[2]  Ole Sigmund,et al.  Topology Optimization of Sub-Wavelength Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[3]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[4]  Eddie Wadbro,et al.  Shape and topology optimization of an acoustic horn-lens combination , 2010, J. Comput. Appl. Math..

[5]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[6]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[7]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[8]  Martin Berggren,et al.  Shape optimization of an acoustic horn , 2003 .

[9]  Esubalewe Lakie Yedeg On the use of thin structures to control the far-field properties of an acoustic device , 2016 .

[10]  Eddie Wadbro Analysis and design of acoustic transition sections for impedance matching and mode conversion , 2014 .

[11]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[12]  M. Munjal Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design , 1987 .

[13]  Colin H. Hansen,et al.  Engineering Noise Control: Theory and Practice, Third Edition , 2003 .

[14]  Krister Svanberg,et al.  Density filters for topology optimization based on the Pythagorean means , 2013 .

[15]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[16]  Jakob S. Jensen,et al.  Acoustic design by topology optimization , 2008 .

[17]  Eddie Wadbro,et al.  Topology Optimization of Metallic Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[18]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[19]  Eddie Wadbro,et al.  An efficient loudspeaker horn designed by numerical optimization : An experimental study , 2010 .

[20]  Eddie Wadbro,et al.  On the far-field properties of an acoustic horn , 2006 .

[21]  Ole Sigmund,et al.  Topology optimized low-contrast all-dielectric optical cloak , 2011 .

[22]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[23]  Erik Holmberg,et al.  Stress constrained topology optimization , 2013, Structural and Multidisciplinary Optimization.

[24]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[25]  Winston E. Kock,et al.  Refracting Sound Waves , 1949 .

[26]  Peter Hansbo,et al.  A Nitsche-type Method for Helmholtz Equation with an Embedded Acoustically Permeable Interface , 2015, 1511.09363.

[27]  Yoon Young Kim,et al.  Topology optimization of muffler internal partitions for improving acoustical attenuation performance , 2009 .

[28]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[29]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[30]  Eddie Wadbro,et al.  Interior layout topology optimization of a reactive muffler , 2016 .