Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary
暂无分享,去创建一个
Jérôme Pousin | Adrien Petrov | Yves Renard | J. Pousin | A. Petrov | Y. Renard | Farshid Dabaghi | F. Dabaghi
[1] J. Moreau,et al. Nonsmooth Mechanics and Applications , 1989 .
[2] The Fundamental Theorem of Calculus for Lebesgue Integral , 2000 .
[3] Patrice Hauret,et al. Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .
[4] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[5] J. Moreau. Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .
[6] Yves Renard,et al. Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .
[7] Steen Krenk,et al. Energy conservation in Newmark based time integration algorithms , 2006 .
[8] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[9] P. Wriggers. Computational contact mechanics , 2012 .
[10] M. Schatzman. A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle , 1980 .
[11] M. Schatzman,et al. Numerical approximation of a wave equation with unilateral constraints , 1989 .
[12] T. Laursen,et al. Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.
[13] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[14] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[15] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[16] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[17] W. Rudin. Real and complex analysis , 1968 .
[18] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[19] A. Curnier,et al. A finite element method for a class of contact-impact problems , 1976 .
[20] Alexandre Ern,et al. Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem , 2009 .
[21] J. Ball. Strongly continuous semigroups, weak solutions, and the variation of constants formula , 1977 .
[22] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[23] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[24] L. Paoli,et al. Approximation et existence en vibro-impact , 1999 .
[25] Jerry J. Koliha,et al. A Fundamental Theorem of Calculus for Lebesgue Integration , 2006, Am. Math. Mon..
[26] K. Deimling. Multivalued Differential Equations , 1992 .
[27] J. Aubin. Approximation of Elliptic Boundary-Value Problems , 1980 .
[28] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[29] Laetitia Paoli,et al. A numerical scheme for impact problems , 1999 .
[30] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[31] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[32] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[33] C. HAGER,et al. Analysis of a Space-Time Discretization for Dynamic Elasticity Problems Based on Mass-Free Surface Elements , 2009, SIAM J. Numer. Anal..
[34] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[35] M. Crouzeix,et al. Analyse Numérique des équations Différentielles , 1987 .
[36] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .