Implementing Aerodynamic Predictions from Computational Fluid Dynamics in Multidisciplinary Design Optimization of a High-Speed Civil Transport

[1]  R. Mead,et al.  The Design of Experiments. , 1989 .

[2]  M. J. Box,et al.  Factorial Designs, the |X′X| Criterion, and Some Related Matters@@@Factorial Designs, the |X prime X| Criterion, and Some Related Matters , 1971 .

[3]  Susan L. Burgee,et al.  A coarse-grained variable-complexity MDO paradigm for HSCT design , 1995 .

[4]  R. L. Barger,et al.  Automatic computation of wing-fuselage intersection lines and fillet inserts with fixed-area constraint , 1993 .

[5]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[6]  J. I The Design of Experiments , 1936, Nature.

[7]  V. Markine,et al.  Refinements in the multi-point approximation method to reduce the effects of noisy structural responses , 1996 .

[8]  William H. Mason,et al.  A supersonic maneuver wing designed for nonlinear attached flow , 1983 .

[9]  Daryl L. Bonhaus,et al.  Euler analysis of a High-Speed Civil Transport concept at Mach 3 , 1991 .

[10]  Anthony A. Giunta,et al.  Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling Methods , 1997 .

[11]  Leland M. Nicolai Fundamentals of Aircraft Design , 1984 .

[12]  Vassili Toropov,et al.  Simulation approach to structural optimization , 1989 .

[13]  M. J. Siclari The NCOREL computer program for 3D nonlinear supersonic potential flow computations , 1983 .

[14]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[15]  L Barger Raymond,et al.  Automatic Computation of Euler-Marching and Subsonic Grids for Wing-Fuselage Configurations , 1994 .

[16]  A. Cenko,et al.  An evaluation of NCOREL, PAN AIR and W12SC3 for the prediction of pressure on a supersonic maneuver wing , 1984 .

[17]  Raphael T. Haftka,et al.  Aerodynamic optimization of an HSCT configuration using variable-complexity modeling , 1993 .

[18]  Robert D. Braun,et al.  Collaborative optimization: an architecture for large-scale distributed design , 1996 .

[19]  S. C. Sommer,et al.  Free-flight measurements of turbulent-boundary-layer skin friction in the presence of severe aerodynamic heating at Mach numbers from 2.8 to 7.0 , 1955 .

[20]  John E. Renaud,et al.  Response surface based, concurrent subspace optimization for multidisciplinary system design , 1996 .

[21]  Peter Edward MacMillin,et al.  Trim, Control, and Performance Effects in Variable-Complexity High-Speed Civil Transport Design , 1996 .

[22]  Jeffrey D. Flamm,et al.  Supersonic aerodynamic characteristics of a Mach 3 high-speed civil transport configuration , 1990 .

[23]  Bernard Grossman,et al.  A Coarse-Grained Parallel Variable-Complexity Multidisciplinary Optimization Paradigm , 1996, Int. J. High Perform. Comput. Appl..

[24]  E. J. Landrum,et al.  DRAG CHARACTERISTICS OF A SERIES OF LOW-DRAG BODIES OF REVOLUTION AT MACH NUMBERS FROM 0.6 TO 4.0 , 1965 .

[25]  R. J. Mack,et al.  Estimation of leading-edge thrust for supersonic wings of arbitrary planform , 1978 .

[26]  Farrokh Mistree,et al.  Statistical Experimentation Methods for Achieving Affordable Concurrent Systems Design , 1997 .

[27]  William H. Mason,et al.  Aerodynamically blunt and sharp bodies , 1994 .

[28]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[29]  L. A. Mccullers Aircraft configuration optimization including optimized flight profiles , 1984 .

[30]  Bernard Grossman,et al.  Variable-complexity response surface aerodynamic design of an HSCT wing , 1995 .

[31]  R. Harris,et al.  An analysis and correlation of aircraft wave drag , 1964 .

[32]  P. Gelhausen,et al.  ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft , 1992 .

[33]  Raphael T. Haftka,et al.  Variable-complexity aerodynamic optimization of a high-speed civil transport wing , 1994 .

[34]  Robert P. Narducci,et al.  Selected optimization procedures for CFD-based shape design involving shock waves or computational noise , 1995 .

[35]  R. Haftka,et al.  Variable-Complexity Interlacing of Weight Equation and Structural Optimization for the Design of the , 1994 .

[36]  Bernard Grossman,et al.  Mul-tidisciplinary Optimization of the High-Speed Civil Transport , 1995 .

[37]  R. Mead,et al.  The Design of Experiments , 1989 .

[38]  D. Hollenback,et al.  Application of a parabolized Navier-Stokes code to an HSCT configuration and comparison to wind tunnel test data , 1993 .

[39]  Raphael T. Haftka,et al.  Construction of response surfaces for design optimization applications , 1996 .

[40]  William H. Mason,et al.  Supersonic, nonlinear, attached-flow wing design for high lift with experimental validation , 1984 .

[41]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[42]  Dimitri N. Mavris,et al.  Combined Aerodynamic and Structural Optimization of a High-Speed Civil Transport Wing , 1995 .

[43]  By J. Weber,et al.  ANALYSIS OF THE ZERO-LIFT WAVE DRAG MEASURED ON DELTA WINGS * , 1976 .

[44]  John E. Renaud,et al.  Response surface approximations for discipline coordination in multidisciplinary design optimization , 1996 .

[45]  C. B. Craidon Description of a digital computer program for airplane configuration plots , 1970 .

[46]  Harry W. Carlson,et al.  Numerical methods and a computer program for subsonic and supersonic aerodynamic design and analysis of wings with attainable thrust considerations , 1984 .

[47]  Vassili Toropov,et al.  Multiparameter structural optimization using FEM and multipoint explicit approximations , 1993 .

[48]  S. A. Powers,et al.  Drag minimization using exact methods , 1964 .

[49]  Bernard Grossman,et al.  Noisy Aerodynamic Response and Smooth Approximations in HSCT Design , 1994 .

[50]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[51]  T Watson Layne,et al.  Wing Design for a High-Speed Civil Transport Using a Design of Experiments Methodology , 1996 .

[52]  Ilan Kroo,et al.  Implementation and Performance Issues in Collaborative Optimization , 1996 .

[53]  B. Grossman,et al.  Variable-complexity response surface approximations for wing structural weight in HSCT design , 1996 .

[54]  Robert Thomas Jones,et al.  High speed wing theory , 1960 .

[55]  E. Hopkins,et al.  An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers , 1971 .

[56]  Bernard Grossman,et al.  Accuracy of Aerodynamic Pre-dictions and its E ects on Supersonic Transport Design , 1996 .

[57]  Layne T. Watson,et al.  Dependence of optimal structural weight on aerodynamic shape for a High Speed Civil Transport , 1996 .

[58]  William L. Oberkampf,et al.  A proposed methodology for computational fluid dynamics code verification, calibration, and validation , 1995, ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities.

[59]  P. Bobbitt The pros and cons of code validation , 1988 .

[60]  H. W. Carlson,et al.  Numerical methods for the design and analysis of wings at supersonic speeds , 1974 .

[61]  Myles Baker,et al.  A practical approach to MDO and its application to an HSCT aircraft (Multidisciplinary Design Optimization) , 1995 .

[62]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[63]  Vladimir Olegovich Balabanov,et al.  Development of Approximations for HSCT Wing Bending Material Weight using Response Surface Methodology , 1997 .