Atoms in nanotubes: Small dimensions and variable dimensionality

Newly discovered carbon nanotubes provide an environment in which small atoms move relatively freely. An assembly of such atoms provides a realization of a quasi-one-dimensional system which can be used to illustrate the concepts of statistical physics.

[1]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[2]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[3]  C. Schönenberger,et al.  Multiwall Carbon Nanotubes , 2000 .

[4]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[5]  A. T. Johnson,et al.  Atomic resolution STM imaging of a twisted single-wall carbon nanotube , 1998, cond-mat/9804175.

[6]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[7]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[8]  Qinyu Wang,et al.  Path integral grand canonical Monte Carlo , 1997 .

[9]  M. W. Cole,et al.  Heat capacity and vibrational spectra of monolayer films adsorbed in nanotubes , 1998 .

[10]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[11]  Paula A. Whitlock,et al.  Monte Carlo simulation of a helium film on graphite , 1998 .

[12]  L. Tonks The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres , 1936 .

[13]  L. H. Nosanow,et al.  Possible ''new'' quantum systems , 1976 .

[14]  K. Gubbins,et al.  Quasi-One-Dimensional Phase Transitions in Nanopores: Pore-Pore Correlation Effects , 1997 .

[15]  J. Mintmire,et al.  Density of states reflects diameter in nanotubes , 1998, Nature.

[16]  Hidetoshi Takahashi WITHDRAWN: A Simple Method for Treating the Statistical Mechanics of One-Dimensional Substances*,† , 1966 .

[17]  Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems , 1950 .

[18]  E. Krotscheck,et al.  Properties of 4 He in one dimension , 1999 .

[19]  J. Johnson,et al.  Computer Simulations of Hydrogen Adsorption on Graphite Nanofibers , 1999 .

[20]  F. Gürsey,et al.  Classical statistical mechanics of a rectilinear assembly , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  W. Carlos,et al.  Selective adsorption of 3He and 4He on the basal plane surface of graphite , 1979 .

[22]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[23]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[24]  J. Johnson,et al.  Phase equilibrium of quantum fluids from simulation: Hydrogen and neon , 1997 .

[25]  M. W. Cole,et al.  Low coverage adsorption in cylindrical pores , 1998 .

[26]  K. Kaneko,et al.  Capillary Condensation of N2 on Multiwall Carbon Nanotubes , 1998 .

[27]  T. Ebbesen,et al.  Patterns in the bulk growth of carbon nanotubes , 1993 .

[28]  David S. Sholl,et al.  Quantum Sieving in Carbon Nanotubes and Zeolites , 1999 .

[29]  K. Lafdi,et al.  Adsorption Studies of Methane Films on Catalytic Carbon Nanotubes and on Carbon Filaments , 1997 .

[30]  P. Pfeifer Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films , 1988 .

[31]  M. Buckingham,et al.  Condensation of the Ideal Bose Gas as a Cooperative Transition , 1968 .

[32]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[33]  T. Ebbesen,et al.  4 He Desorption from Single Wall Carbon Nanotube Bundles: A One-Dimensional Adsorbate , 1999 .

[34]  M. W. Cole,et al.  Physical Adsorption: Forces and Phenomena , 1997 .

[35]  Monte Carlo techniques for quantum fluids, solids and droplets , 1992 .

[36]  Interstitial He and Ne in Nanotube Bundles , 1998, cond-mat/9808229.

[37]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.