Spatial depth-based classification for functional data
暂无分享,去创建一个
[1] Manuel Febrero-Bande,et al. Statistical Computing in Functional Data Analysis: The R Package fda.usc , 2012 .
[2] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[3] Nadia L. Kudraszow,et al. Uniform consistency of kNN regressors for functional variables , 2013 .
[4] B. M. Brown,et al. Statistical Uses of the Spatial Median , 1983 .
[5] Ricardo Fraiman,et al. Robust estimation and classification for functional data via projection-based depth notions , 2007, Comput. Stat..
[6] Peter Hall,et al. A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.
[7] R. Serfling,et al. General notions of statistical depth function , 2000 .
[8] P. Chaudhuri. On a geometric notion of quantiles for multivariate data , 1996 .
[9] R. Serfling. A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .
[10] Juan Romo,et al. Depth-based classification for functional data , 2005, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[11] Ricardo Fraiman,et al. On depth measures and dual statistics. A methodology for dealing with general data , 2009, J. Multivar. Anal..
[12] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[13] Y. Dodge. on Statistical data analysis based on the L1-norm and related methods , 1987 .
[14] John R Fieberg,et al. Estimating Population Abundance Using Sightability Models: R SightabilityModel Package , 2012 .
[15] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[16] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[17] Brian D. Marx,et al. Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.
[18] Regina Y. Liu,et al. Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 14-16, 2003 , 2006, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[19] Irene Epifanio,et al. Shape Descriptors for Classification of Functional Data , 2008, Technometrics.
[20] R. Tibshirani,et al. Penalized Discriminant Analysis , 1995 .
[21] P. Zitt,et al. Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm , 2011, 1101.4316.
[22] J. Romo,et al. On the Concept of Depth for Functional Data , 2009 .
[23] Frédéric Ferraty,et al. Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..
[24] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[25] Arnaud Guyader,et al. Nearest neighbor classification in infinite dimension , 2006 .
[26] P. Vieu,et al. k-Nearest Neighbour method in functional nonparametric regression , 2009 .
[27] Yixin Chen,et al. Outlier Detection with the Kernelized Spatial Depth Function , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[28] D. Nychka,et al. Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked? , 2012 .
[29] Ricardo Fraiman,et al. On the use of the bootstrap for estimating functions with functional data , 2006, Comput. Stat. Data Anal..
[30] R. Fraiman,et al. Trimmed means for functional data , 2001 .
[31] Probal Chaudhuri,et al. On data depth in infinite dimensional spaces , 2014, 1402.2775.
[32] Florentina Bunea,et al. Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.
[33] Robert Serfling,et al. Depth functions in nonparametric multivariate inference , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[34] M. Febrero,et al. Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels , 2008 .
[35] Alicia Nieto-Reyes,et al. The random Tukey depth , 2007, Comput. Stat. Data Anal..