Microbial leaching of metals from solid industrial wastes

[1]  S. M. Mousavi,et al.  Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium , 2013 .

[2]  S. M. Mousavi,et al.  Bioleaching of Spent Refinery Catalysts: A Review , 2013 .

[3]  P. Palfy,et al.  Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries. , 2013, Waste Management.

[4]  Y. Ting,et al.  Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. , 2013, Bioresource technology.

[5]  S. M. Mousavi,et al.  Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions , 2012 .

[6]  J. Pradhan,et al.  Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp , 2012, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[7]  Xiaorong Deng,et al.  A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. , 2012, Journal of hazardous materials.

[8]  Jianqiang Lin,et al.  Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation , 2011, The Journal of Microbiology.

[9]  B. D. Pandey,et al.  Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium , 2011 .

[10]  Zhi Dang,et al.  Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. , 2011, Journal of hazardous materials.

[11]  S. M. Mousavi,et al.  Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum , 2011 .

[12]  A P Das,et al.  Manganese biomining: A review. , 2011, Bioresource technology.

[13]  W. D. Gould,et al.  Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: A review of molecular methods , 2011 .

[14]  M. Marzorati,et al.  Microbial Resource Management revisited: successful parameters and new concepts , 2011, Applied Microbiology and Biotechnology.

[15]  E. Hoque,et al.  Biotechnological recovery of heavy metals from secondary sources—An overview , 2011 .

[16]  S. M. Mousavi,et al.  Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans , 2011 .

[17]  Ping Li,et al.  Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. , 2010, Journal of hazardous materials.

[18]  Yue-hua Hu,et al.  Insights into the dynamics of bacterial communities during chalcopyrite bioleaching. , 2010, FEMS microbiology ecology.

[19]  C. Baker-Austin,et al.  Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1 , 2010, Extremophiles.

[20]  F. Ferella,et al.  Metal recovery from spent refinery catalysts by means of biotechnological strategies. , 2010, Journal of hazardous materials.

[21]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[22]  Haq Nawaz Bhatti,et al.  Column bioleaching of metals from electronic scrap , 2010 .

[23]  Li Li,et al.  Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. , 2009, Bioresource technology.

[24]  D. Johnson,et al.  Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia , 2009, Applied and Environmental Microbiology.

[25]  M. G. Dastidar,et al.  Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulfate as energy sources: a comparative study. , 2009, Journal of hazardous materials.

[26]  Z. Q. Yang,et al.  Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments , 2009, Environmental technology.

[27]  D. Mishra,et al.  Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms. , 2009, Journal of hazardous materials.

[28]  Tao Yang,et al.  Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans , 2009 .

[29]  Y. Ting,et al.  Fungal bioleaching of incineration fly ash: Metal extraction and modeling growth kinetics , 2009 .

[30]  Jie Yang,et al.  Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. , 2009, Journal of hazardous materials.

[31]  Dong Yang,et al.  Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load. , 2008, Journal of hazardous materials.

[32]  D. B. Johnson,et al.  Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates , 2008 .

[33]  Mohammad Ali Faramarzi,et al.  Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms , 2008 .

[34]  W. Sand,et al.  AHL communication is a widespread phenomenon in biomining bacteria and seems to be involved in mineral-adhesion efficiency , 2008 .

[35]  F. Elbaz-Poulichet,et al.  Archaeal diversity in a Fe–As rich acid mine drainage at Carnoulès (France) , 2008, Extremophiles.

[36]  D. Mishra,et al.  Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. , 2008, Journal of hazardous materials.

[37]  Yuguo Zheng,et al.  Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. , 2007, Journal of hazardous materials.

[38]  D. Mishra,et al.  Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs , 2007 .

[39]  W. Verstraete Microbial ecology and environmental biotechnology , 2007, The ISME Journal.

[40]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[41]  D. Holmes,et al.  Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans , 2007, Applied and Environmental Microbiology.

[42]  D. Johnson,et al.  Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations , 2007 .

[43]  D Barrie Johnson,et al.  The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. , 2007, Microbiology.

[44]  H. Nishikawa,et al.  Effects of cyanide and dissolved oxygen concentration on biological Au recovery. , 2006, Journal of biotechnology.

[45]  Y. Ting,et al.  Metal extraction from municipal solid waste (MSW) incinerator fly ash : Chemical leaching and fungal bioleaching , 2006 .

[46]  Mohammad Ali Faramarzi,et al.  Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste , 2006 .

[47]  F. Elbaz-Poulichet,et al.  Diversity of Microorganisms in Fe-As-Rich Acid Mine Drainage Waters of Carnoulès, France , 2006, Applied and Environmental Microbiology.

[48]  F. Elbaz-Poulichet,et al.  Microbial Diversity in a Pyrite-Rich Tailings Impoundment (Carnoulès, France) , 2005 .

[49]  Y. Ting,et al.  Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. , 2005, Journal of biotechnology.

[50]  M. Faramarzi,et al.  Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. , 2004, Journal of biotechnology.

[51]  D. Johnson,et al.  Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH‐controlled bioreactors: Significance of microbial interactions , 2004, Biotechnology and bioengineering.

[52]  D. Rawlings Microbially-assisted dissolution of minerals and its use in the mining industry , 2004 .

[53]  Y. Zimmels,et al.  Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans , 2001 .

[54]  Helmut Brandl,et al.  Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi , 2001 .

[55]  P. Norris,et al.  Acidophiles in bioreactor mineral processing , 2000, Extremophiles.

[56]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[57]  S. Ilyas,et al.  Bioleaching of metals from electronic scrap and its potential for commercial exploitation , 2013 .

[58]  Caixian Tang,et al.  Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms , 2012, Journal of Soils and Sediments.

[59]  S. M. Mousavi,et al.  Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. , 2011, Bioresource technology.

[60]  D. Mishra,et al.  Current Research Trends of Microbiological Leaching for Metal Recovery from Industrial Wastes , 2010 .

[61]  Jong-Gwan Ahn,et al.  Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. , 2008, Waste management.

[62]  W. Sand,et al.  Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. , 2006, Research in microbiology.

[63]  W. Sand,et al.  Direct versus indirect bioleaching , 1999 .