Parallel Solvers for Numerical Upscaling
暂无分享,去创建一个
[1] Radim Blaheta,et al. GPCG–generalized preconditioned CG method and its use with non‐linear and non‐symmetric displacement decomposition preconditioners , 2002, Numer. Linear Algebra Appl..
[2] P. Deuflhard,et al. Large Scale Scientific Computing , 1987 .
[3] Owe Axelsson,et al. Material Parameter Identification with Parallel Processing and Geo-applications , 2011, PPAM.
[4] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[5] Radim Blaheta,et al. A multilevel method with overcorrection by aggregation for solving discrete elliptic problems , 1988 .
[6] Radim Blaheta,et al. Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..
[7] Pavel B. Bochev,et al. On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..
[8] Marian Brezina,et al. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.
[9] I. Hlavácek,et al. Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .
[10] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[11] Ondrej Jakl,et al. GEM - A Platform for Advanced Mathematical Geosimulations , 2009, PPAM.
[12] Radim Blaheta. Space Decomposition Preconditioners and Parallel Solvers , 2004 .
[13] Jonathan J. Hu,et al. ML 3.1 smoothed aggregation user's guide. , 2004 .
[14] Jonathan J. Hu,et al. ML 5.0 Smoothed Aggregation Users's Guide , 2006 .
[15] Ralph Müller,et al. A scalable multi‐level preconditioner for matrix‐free µ‐finite element analysis of human bone structures , 2008 .
[16] Radim Blaheta,et al. Multilevel Solvers with Aggregations for Voxel Based Analysis of Geomaterials , 2011, LSSC.