Nonlinear neural-network modeling of an induction machine

Presents an approach to identify the nonlinear model of an induction machine. The free acceleration test is performed on a 5-HP induction machine, and the resulting stator voltages, stator currents and rotor angular velocity are measured. Using the maximum likelihood (ML) algorithm, the parameter sets of the nonlinear model at various operating conditions are estimated. Then the nonlinear model parameters are represented by feedforward neural networks (FNNs). For validation, the simulated responses of the identified model using the measured and the simulated input patterns for the FNN models are performed. The identified model can be utilized for power system transient stability analysis and for online computer controlled electric drives.

[1]  Toshio Fukuda,et al.  Theory and applications of neural networks for industrial control systems , 1992, IEEE Trans. Ind. Electron..

[2]  G. J. Rogers,et al.  Induction Machine Modelling for Electromagnetic Transient Program , 1987, IEEE Power Engineering Review.

[3]  Paul C. Krause,et al.  Analysis of electric machinery , 1987 .

[4]  F. S. van der Merwe,et al.  Induction motor parameter estimation through an output error technique , 1994 .

[5]  Thomas A. Lipo,et al.  Modeling and Simulation of Induction Motors with Saturable Leakage Reactances , 1984, IEEE Transactions on Industry Applications.

[6]  A. Keyhani,et al.  IGSPICE Simulation of Induction Machines with Saturable Inductances , 1989, IEEE Power Engineering Review.

[7]  Karl Johan Åström,et al.  Maximum Likelihood and Prediction Error , 1979 .

[8]  Donald W. Novotny,et al.  The Influence of Saturation on Induction Machine Drive Dynamics , 1983, IEEE Transactions on Industry Applications.

[9]  D. Shirmohammadi,et al.  Induction Machine Modelling for Electromagnetic Transient Program , 1987, IEEE Transactions on Energy Conversion.

[10]  A. Keyhani,et al.  Estimation of induction machine parameters from standstill time domain data , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[11]  Karl Johan Åström,et al.  Maximum likelihood and prediction error methods , 1979, Autom..

[12]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[13]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[14]  Ali Keyhani,et al.  Maximum likelihood estimation of synchronous machine parameters and study of noise effect from DC flux decay data , 1992 .

[15]  Ali Keyhani,et al.  Maximum likelihood estimation of generator stability constants using SSER test data , 1991 .

[16]  J. S. Edmonds,et al.  Derivation of Induction Motor Models from Standstill Frequency Response Tests , 1989, IEEE Power Engineering Review.

[17]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[18]  Thomas A. Lipo,et al.  An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives , 1992 .