Identification and antioxidant characterisation of thioredoxin-like1 from Apis cerana cerana

[1]  Bo Yeon Kim,et al.  Molecular cloning and oxidative stress response of a sigma-class glutathione S-transferase of the bumblebee Bombus ignitus. , 2011, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[2]  Jin-jun Wang,et al.  Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. , 2010, Journal of insect physiology.

[3]  T. Matsuo,et al.  Loss of Trx‐2 enhances oxidative stress‐dependent phenotypes in Drosophila , 2010, FEBS letters.

[4]  Baohua Xu,et al.  Identification and characterization of two phospholipid hydroperoxide glutathione peroxidase genes from Apis cerana cerana. , 2010, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[5]  Dean P. Jones,et al.  Attenuation of Angiotensin II–Induced Vascular Dysfunction and Hypertension by Overexpression of Thioredoxin 2 , 2009, Hypertension.

[6]  Yasushi Takagi,et al.  Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia , 2009, Brain Research.

[7]  Xue-xin Chen,et al.  Antimicrobial Peptide Evolution in the Asiatic Honey Bee Apis cerana , 2009, PloS one.

[8]  D. Denlinger,et al.  High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. , 2008, Insect biochemistry and molecular biology.

[9]  Cong-Zhao Zhou,et al.  Expression, purification, crystallization and preliminary X-ray diffraction analysis of thioredoxin Trx1 from Saccharomyces cerevisiae. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[10]  Henry S. Pollock,et al.  Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies , 2008, Proceedings of the National Academy of Sciences.

[11]  N. K. Sah,et al.  Invitro culturedSpodoptera frugiperda insect cells: Model for oxidative stress-induced apoptosis , 1999, Journal of Biosciences.

[12]  J. Levine,et al.  Generalization of Courtship Learning in Drosophila Is Mediated by cis-Vaccenyl Acetate , 2007, Current Biology.

[13]  G. Robinson,et al.  Genes of the antioxidant system of the honey bee: annotation and phylogeny , 2006, Insect molecular biology.

[14]  Y. P. Chen,et al.  Immune pathways and defence mechanisms in honey bees Apis mellifera , 2006, Insect molecular biology.

[15]  Mark J. F. Brown,et al.  Brood-cell size does not influence the susceptibility of honey bees (Apis mellifera) to infestation by tracheal mites (Acarapis woodi) , 2006, Experimental & Applied Acarology.

[16]  Pedro A Fernandes,et al.  Similarities and differences in the thioredoxin superfamily. , 2006, Progress in biophysics and molecular biology.

[17]  J. Gustafsson,et al.  Characterization of human thioredoxin‐like‐1: Potential involvement in the cellular response against glucose deprivation , 2006, FEBS letters.

[18]  Takaya Ikemoto,et al.  Intrinsic Optimum Temperature for Development of Insects and Mites , 2005 .

[19]  Nicoletta Pellegrini,et al.  A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. , 2005, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[20]  L. Vosshall,et al.  Functional conservation of an insect odorant receptor gene across 250 million years of evolution , 2005, Current Biology.

[21]  Y. Guan Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact , 2005 .

[22]  D. Denlinger,et al.  Molecular modalities of insect cold survival: current understanding and future trends , 2004 .

[23]  C. Strambi,et al.  Decreasing Glutamate Buffering Capacity Triggers Oxidative Stress and Neuropil Degeneration in the Drosophila Brain , 2004, Current Biology.

[24]  K. Becker,et al.  The thioredoxin system—From science to clinic , 2004, Medicinal research reviews.

[25]  S. Seité,et al.  Modulation of gene expression induced in human epidermis by environmental stress in vivo. , 2003, The Journal of investigative dermatology.

[26]  Stefan Fuchs,et al.  Hot bees in empty broodnest cells: heating from within , 2003, Journal of Experimental Biology.

[27]  T. Finkel Oxidant signals and oxidative stress. , 2003, Current opinion in cell biology.

[28]  J. Fewell,et al.  Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[29]  Y. Yamaguchi-Iwai,et al.  Thioredoxin‐2 (TRX‐2) is an essential gene regulating mitochondria‐dependent apoptosis , 2002, The EMBO journal.

[30]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[31]  A. Miranda-Vizuete,et al.  Characterization of Sptrx, a Novel Member of the Thioredoxin Family Specifically Expressed in Human Spermatozoa* , 2001, The Journal of Biological Chemistry.

[32]  D. Inzé,et al.  The role of active oxygen species in plant signal transduction , 2001 .

[33]  N. Holbrook,et al.  Oxidants, oxidative stress and the biology of ageing , 2000, Nature.

[34]  Amanda Capes-Davis,et al.  CROC-4: A Novel Brain Specific Transcriptional Activator of c-fos Expressed from Proliferation through to Maturation of Multiple Neuronal Cell Types , 2000, Molecular and Cellular Neuroscience.

[35]  R. Weindruch,et al.  Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. , 1998, Free radical biology & medicine.

[36]  K. Sakamaki,et al.  Purification, Molecular Cloning, and Characterization of TRP32, a Novel Thioredoxin-related Mammalian Protein of 32 kDa* , 1998, The Journal of Biological Chemistry.

[37]  J. Gustafsson,et al.  Cloning and Expression of a Novel Mammalian Thioredoxin* , 1997, The Journal of Biological Chemistry.

[38]  S. Beckendorf,et al.  The Broad‐Complex directly controls a tissue‐specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. , 1994, The EMBO journal.

[39]  H. Xiao,et al.  Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. , 1994, Nucleic acids research.

[40]  D. Denlinger,et al.  Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, Sarcophaga crassipalpis, by low and high temperature stress , 1994 .

[41]  S. Ekker,et al.  Differential DNA sequence recognition is a determinant of specificity in homeotic gene action. , 1992, The EMBO journal.

[42]  J. Gogos,et al.  Sequence discrimination by alternatively spliced isoforms of a DNA binding zinc finger domain. , 1992, Science.

[43]  G. Robinson Regulation of division of labor in insect societies. , 1992, Annual review of entomology.

[44]  Michael Levine,et al.  Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila , 1989, Nature.

[45]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[46]  I. Fridovich The biology of oxygen radicals. , 1978, Science.

[47]  A. Larsson,et al.  Enzymatic Synthesis of Deoxyribonucleotides , 1967 .

[48]  T. Laurent,et al.  ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. , 1964, The Journal of biological chemistry.

[49]  I. Ziegler,et al.  Genetic Aspects of Ommochrome and Pterin Pigments , 1961 .

[50]  H. H. Laidlaw,et al.  General Genetics of Bees , 1956 .

[51]  J. Gowen,et al.  Androgenesis with Zygogenesis in Gynandromorphic Honeybees (Apis mellifera L.). , 1952, Science.