This work describes the development and demonstration of a non-scanning chemical imaging probe, capable of obtaining surface-enhanced Raman scattering (SERS) images of samples with which it is in direct contact. The SERS imaging arrays (i.e., nanoprobes) are used in a signal collection mode to obtain images by measuring as many as 30 000 individual sub-diffraction-limited locations on a sample's surface simultaneously. These SERS probes are fabricated from coherent fiber-optic imaging bundles, allowing for the formation of a highly ordered roughened metal surface, capable of providing uniform SERS enhancement (<2.0% relative standard deviation) across the entire imaging surface. These optimized SERS nanoprobes have potential application to a wide range of research fields from materials science to cellular biology.