Numerical simulations of gas–liquid–solid flows in a hydrocyclone separator

[1]  Raj K. Rajamani,et al.  A comparative study of three turbulence-closure models for the hydrocyclone problem , 2005 .

[2]  R. Sripriya,et al.  CFD modelling of hydrocyclone—prediction of cut size , 2005 .

[3]  Andrzej F. Nowakowski,et al.  Application of CFD to modelling of the flow in hydrocyclones: Is this a realizable option or still a research challenge? , 2004 .

[4]  Manfred Piesche,et al.  Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics , 2004 .

[5]  J. C. Cullivan,et al.  Understanding the hydrocyclone separator through computational fluid dynamics , 2003 .

[6]  T. Napier-Munn,et al.  Towards a new understanding of the cyclone separator , 2003 .

[7]  R. X. Rong,et al.  Computational fluid dynamic simulation of dense medium cyclones , 2002 .

[8]  Djamel Lakehal,et al.  Large-Eddy Simulation of Turbulent Shear Flows Laden with Bubbles , 2001 .

[9]  L. M. Portela,et al.  Direct and Large-Eddy Simulation of Particle-Laden Flows Using the Point-Particle Approach , 2001 .

[10]  F. Boysan,et al.  Advances in Cyclone Modelling Using Unstructured Grids , 2000 .

[11]  Lin Ma,et al.  NUMERICAL MODELLING OF THE FLUID AND PARTICLE PENETRATION THROUGH SMALL SAMPLING CYCLONES , 2000 .

[12]  K. Squires,et al.  On the prediction of gas–solid flows with two-way coupling using large eddy simulation , 2000 .

[13]  Martha Salcudean,et al.  A Numerical Simulation of Hydrocyclones , 1999 .

[14]  Rubens Sampaio,et al.  A numerical model for prediction of the air-core shape of hydrocyclone flow , 1999 .

[15]  Adrian J. Saul,et al.  A Computational fluid dynamics (CFD) particle tracking approach to efficiency prediction , 1998 .

[16]  S M Fraser,et al.  Computational and experimental investigations in a cyclone dust separator , 1997 .

[17]  Rubens Sampaio,et al.  Air core and roping in hydrocyclones , 1996 .

[18]  Tomasz Dyakowski,et al.  Prediction of air-core size and shape in a hydrocyclone , 1995 .

[19]  E. G. Hauptmann,et al.  Modelling the flow in a hydrocyclone , 1994 .

[20]  R. Rajamani,et al.  Application of LDV to the modeling of particle size classification in industrial hydrocyclones , 1994 .

[21]  Raj K. Rajamani,et al.  Hydrodynamic Modeling of Swirling Flow and Particle Classification in Large-Scale Hydrocyclones , 1994 .

[22]  Larry L. Baxter,et al.  Turbulent dispersion of particles: The STP model , 1993 .

[23]  William J. Whiten,et al.  Prediction of air core diameters for hydrocyclones , 1993 .

[24]  Mihail C. Roco,et al.  Particulate two-phase flow , 1993 .

[25]  T. Gatski,et al.  Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach , 1991, Journal of Fluid Mechanics.

[26]  Raj K. Rajamani,et al.  Mathematical model of the hydrocyclone based on physics of fluid flow , 1991 .

[27]  D. Gidaspow,et al.  Hydrodynamics of circulating fluidized beds: Kinetic theory approach , 1991 .

[28]  D. Gidaspow,et al.  A bubbling fluidization model using kinetic theory of granular flow , 1990 .

[29]  Malcolm R. Davidson Similarity solutions for flow in hydrocyclones , 1988 .

[30]  T. R. Auton,et al.  The lift force on a spherical body in a rotational flow , 1987, Journal of Fluid Mechanics.

[31]  Koulis Pericleous,et al.  The hydrocyclone classifier — A numerical approach , 1986 .

[32]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[33]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[34]  D. F. Kelsall,et al.  A further study of the hydraulic cyclone , 1953 .