Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide

Abstract Metal-oxide based electronics synapse is promising for future neuromorphic computation application due to its simple structure and fab-friendly materials. HfOx resistive switching memory has been demonstrated superior performance such as high speed, low voltage, robust reliability, excellent repeatability, and so on. In this work, the HfOx synaptic device was investigated based on its resistive switching phenomenon. HfOx resistive switching device with different electrodes and dopants were fabricated. TiN/Gd:HfOx/Pt stack exhibited the best synaptic performance, including controllable multilevel ability and low training energy consumption. The training schemes for memory and forgetting were developed.