Modelling Cartographic Relations for Categorical Maps

Map generalisation seeks to maintain important map objects, patterns, and relationships, while suppressing unimportant ones. Hence, the spatial and semantic characteristics of map objects as well as the relations existing between them have to be detected, preserved and exploited for generalisation. Two main groups of relations can be differentiated: Horizontal relations exist on the same level of detail (LOD), or scale, and represent common structural properties. Vertical relations appear between homologous objects and object groups in a collection of the same map type but across different map scales. Focusing on thematic categorical maps, the paper emphasises the importance of horizontal and vertical relations in automated generalisation. Hence, a typology of horizontal and vertical relations for categorical maps is presented and links to existing generalisation operators are identified. A selection of relations is discussed and illustrated in more detail.

[1]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[2]  B. D. Dent,et al.  Principles of thematic map design , 1985 .

[3]  R. McMaster,et al.  Map Generalization: Making Rules for Knowledge Representation , 1991 .

[4]  Eliseo Clementini,et al.  A Small Set of Formal Topological Relationships Suitable for End-User Interaction , 1993, SSD.

[5]  Barbara P. Buttenfield,et al.  Acquisition of Procedural Cartographic Knowledge by Reverse Engineering , 1995 .

[6]  Tapani Sarjakoski,et al.  Incremental generalization for multiple representations of geographical objects , 1995 .

[7]  Robert Weibel,et al.  Three essential building blocks for automated generalization , 2020 .

[8]  Robert Weibel,et al.  Overcoming the Knowledge Acquisition Bottleneck in Map Generalization: The Role of Interactive Systems and Computational Intelligence , 1995, COSIT.

[9]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[10]  Christopher B. Jones,et al.  Database Design for a Multi-Scale Spatial Information System , 1996, Int. J. Geogr. Inf. Sci..

[11]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[12]  Sabine Timpf,et al.  Cartographic objects in a multi-scale data structure , 1997 .

[13]  Monika Sester,et al.  Linking Objects of Different Spatial Data Sets by Integration and Aggregation , 1998, GeoInformatica.

[14]  Anne Ruas,et al.  Experiments with Learning Techniques for Spatial Model Enrichment and Line Generalization , 1998, GeoInformatica.

[15]  Sabine Timpf,et al.  Hierarchical Structures in Map Series , 1998 .

[16]  M. Egenhofer Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases , 1998 .

[17]  Eric J. Gustafson,et al.  Quantifying Landscape Spatial Pattern: What Is the State of the Art? , 1998, Ecosystems.

[18]  Stefano Spaccapietra,et al.  Modeling spatial data in the MADS conceptual model , 1998 .

[19]  Lars Harrie,et al.  A Prototype System for Propagating Updates between Cartographic Data Sets , 1999 .

[20]  Tumasch Reichenbacher,et al.  KNOWLEDQE ACQUISITION IN MAP GENERALIZATION USING INTERACTIVE SYSTEMS AND MACHINE LEARNING , 1999 .

[21]  Kurt H. Riitters,et al.  Landscape pattern metrics and regional assessment , 1999 .

[22]  A. Ruas Modèle de généralisation de données géographiques à base de contraintes et d'autonomie , 1999 .

[23]  Stefano Spaccapietra,et al.  GIS Databases: From Multiscale to MultiRepresentation , 2000, SARA.

[24]  Beat Peter,et al.  Measures for the Generalization of Polygonal Maps with Categorical Data , 2001 .

[25]  A. Ruas,et al.  Detecting Building Alignments for Generalisation Purposes , 2002 .

[26]  William Mackaness,et al.  An Integrated Approach to the Generalization of Geological Maps , 2002 .

[27]  Martin Galanda,et al.  Adaptive Zooming in Web Cartography , 2002, Comput. Graph. Forum.

[28]  Michael Fuchs Methoden zur objektiven Ableitung von Bodenkarten im Folgemaßstab , 2002 .

[29]  Hampe MRDB APPLICATIONS FOR DATA REVISION AND REAL-TIME GENERALISATION , 2003 .

[30]  Alessandro Cecconi,et al.  Integration of Cartographic Generalization and Multi-Scale Databases for Enhanced Web Mapping , 2003 .

[31]  Robert Weibel,et al.  Automated Polygon Generalization in a Multi Agent System , 2003 .

[32]  Robert Weibel,et al.  Data Enrichment for Adaptive Generalisation , 2004 .

[33]  Jean-Daniel Zucker,et al.  Consistency Assessment Between Multiple Representations of Geographical Databases: a Specification-Based Approach , 2004, SDH.

[34]  Cécile Duchêne,et al.  The CartACom model : a generalisation model for taking relational constraints into account , 2004 .

[35]  Julien Gaffuri,et al.  Role of urban patterns for building generalisation: An application of AGENT , 2004 .

[36]  Robert Weibel,et al.  A CONCEPTUAL FRAMEWORK FOR AUTOMATED GENERALIZATION AND ITS APPLICATION TO GEOLOGIC AND SOIL MAPS , 2005 .

[37]  R. Weibel,et al.  Relations and Structures in Categorical Maps , 2005 .

[38]  Monika Sester,et al.  Optimization approaches for generalization and data abstraction , 2005, Int. J. Geogr. Inf. Sci..

[39]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[40]  D. Flewelling Measuring Similarities of Spatial Datasets , 2007 .

[41]  Robert Weibel,et al.  Modelling the Overall Process of Generalisation , 2007 .