Uniform Strain in Heterostructure Tunnel Field-Effect Transistors

Strain can strongly impact the performance of III-V tunnel field-effect transistors (TFETs). However, previous studies on homostructure TFETs have found an increase in ON-current to be accompanied with a degradation of subthreshold swing. We perform 30-band quantum mechanical simulations of staggered heterostructure p-n-i-n TFETs submitted to uniaxial and biaxial uniform stress and find the origin of the subthreshold degradation to be a reduction of the density of states in the strained case. We apply an alternative configuration including a lowly doped pocket in the source, which allows to take full benefit of the strain-induced increase in ON-current.

[1]  S. Trellenkamp,et al.  Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors , 2013, IEEE Electron Device Letters.

[2]  Scott E. Thompson,et al.  Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs , 2009 .

[3]  S. Salahuddin,et al.  Heterojunction Vertical Band-to-Band Tunneling Transistors for Steep Subthreshold Swing and High on Current , 2011, IEEE Electron Device Letters.

[4]  W. Haensch,et al.  On the Possibility of Obtaining MOSFET-Like Performance and Sub-60-mV/dec Swing in 1-D Broken-Gap Tunnel Transistors , 2010, IEEE Transactions on Electron Devices.

[5]  J. Knoch,et al.  Modeling of High-Performance p-Type III–V Heterojunction Tunnel FETs , 2010, IEEE Electron Device Letters.

[6]  K. Kao,et al.  Tensile strained Ge tunnel field-effect transistors: k · p material modeling and numerical device simulation , 2014 .

[7]  Aaron Thean,et al.  Quantum mechanical solver for confined heterostructure tunnel field-effect transistors , 2014 .

[8]  D. Esseni,et al.  Design options for hetero-junction tunnel FETs with high on current and steep sub-threshold voltage slope , 2013, 2013 IEEE International Electron Devices Meeting.

[9]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[10]  T. Bahder Eight-bandk⋅pmodel of strained zinc-blende crystals , 1990 .

[11]  I. Saïdi,et al.  Full-zone k.p model for the electronic structure of unstrained GaAs1−xPx and strained AlxIn1−xAs alloys , 2012 .

[12]  R. Kotlyar,et al.  Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors , 2013 .

[13]  K. Boujdaria,et al.  The eight-level k ⋅ p model for the conduction and valence bands of InAs, InP, InSb , 2007 .

[14]  Aaron Thean,et al.  Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors , 2015 .

[15]  S. Koester,et al.  Effect of Uniaxial Strain on the Drain Current of a Heterojunction Tunneling Field-Effect Transistor , 2011, IEEE Electron Device Letters.

[16]  Heike Riel,et al.  Vertical InAs-Si Gate-All-Around Tunnel FETs Integrated on Si Using Selective Epitaxy in Nanotube Templates , 2015, IEEE Journal of the Electron Devices Society.

[17]  L. Selmi,et al.  Strain-Induced Performance Improvements in InAs Nanowire Tunnel FETs , 2012, IEEE Transactions on Electron Devices.

[18]  Takashi Fukui,et al.  Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length , 2014 .

[19]  Y. Yeo,et al.  Tunneling Field-Effect Transistor: Effect of Strain and Temperature on Tunneling Current , 2009, IEEE Electron Device Letters.

[20]  Ya-Hong Xie,et al.  Vertical Silicon p-n-p-n Tunnel nMOSFET With MBE-Grown Tunneling Junction , 2011, IEEE Transactions on Electron Devices.

[21]  Niamh Waldron,et al.  InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates , 2014, IEEE Electron Device Letters.

[22]  Y. Hao,et al.  Relaxed germanium-tin P-channel tunneling field-effect transistors fabricated on Si: impacts of Sn composition and uniaxial tensile strain , 2015 .

[23]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[24]  M. J. Kumar,et al.  Novel Attributes of a Dual Material Gate Nanoscale Tunnel Field-Effect Transistor , 2011, IEEE Transactions on Electron Devices.

[25]  G. Groeseneken,et al.  Quantum Mechanical Performance Predictions of p-n-i-n Versus Pocketed Line Tunnel Field-Effect Transistors , 2013, IEEE Transactions on Electron Devices.

[26]  W. Vandenberghe,et al.  An envelope function formalism for lattice-matched heterostructures , 2015, 1801.08846.

[27]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[28]  J Gobrecht,et al.  Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5% , 2012, Nature Communications.

[29]  G. Groeseneken,et al.  15-band spectral envelope function formalism applied to broken gap tunnel field-effect transistors , 2015, 2015 International Workshop on Computational Electronics (IWCE).

[30]  K. Maex,et al.  Tunnel field-effect transistor without gate-drain overlap , 2007 .

[31]  N. Collaert,et al.  InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models , 2014 .

[32]  Ian A. Young,et al.  Tunnel Field-Effect Transistors: Prospects and Challenges , 2015, IEEE Journal of the Electron Devices Society.

[33]  Erik Lind,et al.  III-V Heterostructure Nanowire Tunnel FETs , 2015, IEEE Journal of the Electron Devices Society.

[34]  A. Seabaugh,et al.  Tunnel Field-Effect Transistors: State-of-the-Art , 2014, IEEE Journal of the Electron Devices Society.