The evolution of self-replicating computer organisms

Abstract A computer model is described that explores some of the possible behavior of biological life during the early stages of evolution. The simulation starts with a primordial soup composed of randomly generated sequences of computer operations selected from a basis set of 16 opcodes. With a probability of about 10−4, these sequences spontaneously generate large and inefficient self-replicating “organisms”. Driven by mutations, these protobiotic ancestors more efficiently generate offspring by initially eliminating unnecessary code. Later they increase their complexity by adding additional subroutines as they compete for the system's two limited resources, computer memory and CPU time. The ensuing biology includes replicating hosts, parasites and colonies.

[1]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[2]  S. Spiegelman,et al.  An in vitro analysis of a replicating molecule. , 1967, American scientist.

[3]  Günter von Kiedrowski,et al.  Self-replication by condensation of 3-aminobenzamidines and 2-formylphenoxyacetic acids , 1992 .

[4]  A Dress,et al.  How old is the genetic code? Statistical geometry of tRNA provides an answer. , 1989, Science.

[5]  N. Eldredge,et al.  Punctuated equilibrium comes of age , 1993, Nature.

[6]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[7]  Chris Adami Learning and complexity in genetic auto-adaptive systems , 1995 .

[8]  Wolfgang Banzhaf,et al.  Self-replicating sequences of binary numbers☆ , 1993 .

[9]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[10]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[11]  Manfred Eigen,et al.  The origin of genetic information. , 1981, Scientific American.

[12]  L E Orgel,et al.  RNA catalysis and the origins of life. , 1986, Journal of theoretical biology.

[13]  A. N. Pargellis,et al.  The spontaneous generation of digital “Life” , 1996 .

[14]  Steen Rasmussen,et al.  The coreworld: emergence and evolution of cooperative structures in a computational chemistry , 1990 .

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[16]  F H Crick The genetic code. 3. , 1966, Scientific American.

[17]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[18]  C. Adami,et al.  Self-organized criticality in living systems , 1994, adap-org/9401001.

[19]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[20]  Y. Beers Introduction to the theory of error , 1953 .

[21]  Julius Rebek,et al.  Synthetic replicators and extrabiotic chemistry , 1992 .

[22]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[23]  Michael A. Murphy,et al.  Punctuated stasis and collateral evolution in the Devonian lineage of Monograptus hercynicus , 1994 .

[24]  Edward Rietman,et al.  Creating artificial life: self organization , 1993 .

[25]  Günter von Kiedrowski,et al.  A Self‐Replicating Hexadeoxynucleotide , 1986 .

[26]  T. Cech RNA as an enzyme. , 1986, Biochemistry international.

[27]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[28]  Thomas S. Ray An evolutionary approach to synthetic biology: Zen and the art of creating life , 1993 .

[29]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.