Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework

[1]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[2]  S. Bianchini,et al.  A uniqueness result for the decomposition of vector fields in $$\mathbb {R}^{{d}}$$ , 2020, Inventiones mathematicae.

[3]  M. Quincampoix,et al.  Optimal control of multiagent systems in the Wasserstein space , 2020, Calculus of Variations and Partial Differential Equations.

[4]  Michael Westdickenberg,et al.  Flow solutions of transport equations , 2019, 1912.06815.

[5]  Francesco Rossi,et al.  Intrinsic Lipschitz Regularity of Mean-Field Optimal Controls , 2019, SIAM J. Control. Optim..

[6]  H. van den Berg Differential inclusions , 2019, Hormones as Tokens of Selection.

[7]  Nastassia Pouradier Duteil,et al.  Social dynamics models with time-varying influence , 2019, Mathematical Models and Methods in Applied Sciences.

[8]  Martin Burger,et al.  Instantaneous control of interacting particle systems in the mean-field limit , 2019, J. Comput. Phys..

[9]  Martin Burger,et al.  Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures , 2019, SIAM J. Control. Optim..

[10]  Benedetto Piccoli,et al.  Measure differential inclusions , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[11]  Benoît Bonnet A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[12]  Francesco Rossi,et al.  Minimal time for the continuity equation controlled by a localized perturbation of the velocity vector field , 2018, Journal of Differential Equations.

[13]  Fabio S. Priuli,et al.  Generalized Control Systems in the Space of Probability Measures , 2018 .

[14]  B. Piccoli,et al.  Generalized dynamic programming principle and sparse mean-field control problems , 2018, Journal of Mathematical Analysis and Applications.

[15]  Hélène Frankowska,et al.  Necessary optimality conditions for infinite dimensional state constrained control problems , 2018, Journal of Differential Equations.

[16]  M. Fornasier,et al.  Mean-field optimal control as Gamma-limit of finite agent controls , 2018, European Journal of Applied Mathematics.

[17]  Francesco Rossi,et al.  The Pontryagin Maximum Principle in the Wasserstein Space , 2017, Calculus of Variations and Partial Differential Equations.

[18]  Francesco Rossi,et al.  Approximate and Exact Controllability of the Continuity Equation with a Localized Vector Field , 2017, SIAM J. Control. Optim..

[19]  Benedetto Piccoli,et al.  Measure Differential Equations , 2017, Archive for Rational Mechanics and Analysis.

[20]  N. Pogodaev Numerical Algorithm for Optimal Control of Continuity Equations , 2017, 1708.05516.

[21]  Benedetto Piccoli,et al.  Superposition Principle for Differential Inclusions , 2017, LSSC.

[22]  Francesco Rossi,et al.  Minimal time problem for crowd models with localized vector fields , 2017 .

[23]  S. Bianchini,et al.  A uniqueness result for the decomposition of vector fields in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathb , 2017, Inventiones mathematicae.

[24]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[25]  N. Pogodaev Optimal control of continuity equations , 2015, 1506.08932.

[26]  Massimo Fornasier,et al.  Mean-Field Pontryagin Maximum Principle , 2015, J. Optim. Theory Appl..

[27]  Y. Achdou,et al.  ON THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS ARISING IN MEAN FIELD TYPE CONTROL , 2015, 1503.05044.

[28]  L. Ambrosio,et al.  Continuity equations and ODE flows with non-smooth velocity* , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  B. Piccoli,et al.  Multiscale Modeling of Pedestrian Dynamics , 2014 .

[30]  L. Ambrosio,et al.  Existence and Uniqueness of Maximal Regular Flows for Non-smooth Vector Fields , 2014, 1406.3701.

[31]  Massimo Fornasier,et al.  Mean-field sparse optimal control , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  M. Fornasier,et al.  Mean-Field Optimal Control , 2013, 1306.5913.

[33]  Giacomo Albi,et al.  Stability Analysis of Flock and Mill Rings for Second Order Models in Swarming , 2013, SIAM J. Appl. Math..

[34]  Nicola Bellomo,et al.  On the dynamics of social conflicts: looking for the Black Swan , 2012, ArXiv.

[35]  B. Piccoli,et al.  Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes , 2011, 1106.2555.

[36]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[37]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[38]  Xiaoming Hu,et al.  Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications (Ren, W. and Beard, R.W.; 2008) [Book Shelf] , 2010, IEEE Control Systems.

[39]  Jorge Cortes,et al.  Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms , 2009 .

[40]  C. Villani Optimal Transport: Old and New , 2008 .

[41]  Wilfrid Gangbo,et al.  Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems , 2008, 0807.1065.

[42]  W. Gangbo,et al.  Hamiltonian ODEs in the Wasserstein space of probability measures , 2008 .

[43]  Randal W. Beard,et al.  Distributed Consensus in Multi-vehicle Cooperative Control - Theory and Applications , 2007, Communications and Control Engineering.

[44]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[45]  P. Lions,et al.  Mean field games , 2007 .

[46]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[47]  P. Bernard Young measures, superposition and transport , 2007, math/0701451.

[48]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[49]  L. Ambrosio Transport equation and Cauchy problem for BV vector fields , 2004 .

[50]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[51]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[52]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[53]  H. Frankowska,et al.  A priori estimates for operational differential inclusions , 1990 .

[54]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[55]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[56]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[57]  L. Ambrosio The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems , 2011 .

[58]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[59]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[60]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[61]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[62]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[63]  A. Vlasov,et al.  Many-particle theory and its application to plasma , 1961 .