Functional genomics and proteomics: charting a multidimensional map of the yeast cell.

The challenge of large-scale functional genomics projects is to build a comprehensive map of the cell including genome sequence and gene expression data, information on protein localization, structure, function and expression, post-translational modifications, molecular and genetic interactions and phenotypic descriptions. Some of this broad set of functional genomics data has been already assembled for the budding yeast. Even though molecular cartography of the yeast cell is still far from comprehensive, functional genomics has begun to forge connections between disparate cellular events and to foster numerous hypotheses. Here we review several different genomics and proteomics technologies and describe bioinformatics methods for exploring these data to make new discoveries.

[1]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[2]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[3]  Gary D Bader,et al.  Analyzing yeast protein–protein interaction data obtained from different sources , 2002, Nature Biotechnology.

[4]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[5]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[6]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[7]  P. Rouzé,et al.  Current methods of gene prediction, their strengths and weaknesses. , 2002, Nucleic acids research.

[8]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[9]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[10]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[11]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[12]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[13]  Nir Friedman,et al.  Inferring subnetworks from perturbed expression profiles , 2001, ISMB.

[14]  D. Lauffenburger,et al.  Computational modeling of the EGF-receptor system: a paradigm for systems biology. , 2003, Trends in cell biology.

[15]  M. Snyder,et al.  A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. , 2001, Molecular biology of the cell.

[16]  W. Earnshaw,et al.  Reverse genetics of essential genes in tissue-culture cells: 'dead cells talking'. , 2002, Trends in cell biology.

[17]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[18]  M. Mann,et al.  Directed Proteomic Analysis of the Human Nucleolus , 2002, Current Biology.

[19]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 2000, Nucleic Acids Res..

[20]  P. Kemmeren,et al.  Protein interaction verification and functional annotation by integrated analysis of genome-scale data. , 2002, Molecular cell.

[21]  T. Gaasterland,et al.  Making the most of microarray data , 2000, Nature Genetics.

[22]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[23]  A. Grigoriev A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. , 2001, Nucleic acids research.

[24]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[25]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[27]  M. Gerstein,et al.  A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome. , 2000, Journal of molecular biology.

[28]  M. Mann,et al.  Analysis of proteins and proteomes by mass spectrometry. , 2001, Annual review of biochemistry.

[29]  H. Bussey,et al.  Novel strategies in antifungal lead discovery. , 2002, Current opinion in microbiology.

[30]  Mark Gerstein,et al.  SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics , 2001, Nucleic Acids Res..

[31]  Temple F. Smith,et al.  Overview of the Alliance for Cellular Signaling , 2002, Nature.

[32]  Lani F. Wu,et al.  Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters , 2002, Nature Genetics.

[33]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[34]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[35]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[36]  Chris Sander,et al.  Completeness in structural genomics , 2001, Nature Structural Biology.

[37]  Nancy Kleckner,et al.  Cohesins Bind to Preferential Sites along Yeast Chromosome III, with Differential Regulation along Arms versus the Centric Region , 1999, Cell.

[38]  Matthias Peter,et al.  Nuclear sequestration of the exchange factor Cdc24 by Far1 regulates cell polarity during yeast mating , 2000, Nature Cell Biology.

[39]  L. Guarente Synthetic enhancement in gene interaction: a genetic tool come of age. , 1993, Trends in genetics : TIG.

[40]  Anton J. Enright,et al.  BioLayout-an automatic graph layout algorithm for similarity visualization , 2001, Bioinform..

[41]  A. McMahon,et al.  Branching morphogenesis of the lung: new molecular insights into an old problem. , 2003, Trends in cell biology.

[42]  Janan T. Eppig,et al.  A mouse phenome project , 2000, Mammalian Genome.

[43]  S. Fields,et al.  A Crisis in Postgenomic Nomenclature , 2002, Science.

[44]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[45]  M. Gerstein,et al.  Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. , 2002, Genes & development.

[46]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[47]  S. Forsburg The art and design of genetic screens: yeast , 2001, Nature Reviews Genetics.

[48]  David M Sabatini,et al.  Cell-biological applications of transfected-cell microarrays. , 2002, Trends in cell biology.

[49]  J. Shabanowitz,et al.  A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis , 2002, Nature.

[50]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[51]  R. Stevens,et al.  Global Efforts in Structural Genomics , 2001, Science.

[52]  E. Winzeler,et al.  Treasures and traps in genome-wide data sets: case examples from yeast , 2002, Nature Reviews Genetics.

[53]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[54]  Gary D Bader,et al.  A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules , 2001, Science.

[55]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[56]  Mike Tyers,et al.  Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast , 2002, Science.

[57]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[58]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[59]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[60]  M. Gerstein,et al.  Analysis of yeast protein kinases using protein chips , 2000, Nature Genetics.

[61]  C. Deane,et al.  Protein Interactions , 2002, Molecular & Cellular Proteomics.

[62]  David A. Gough,et al.  Predicting protein-protein interactions from primary structure , 2001, Bioinform..

[63]  Ruedi Aebersold,et al.  Quantitative Protein Profiling Using Two-dimensional Gel Electrophoresis, Isotope-coded Affinity Tag Labeling, and Mass Spectrometry* , 2002, Molecular & Cellular Proteomics.

[64]  L. Stein,et al.  RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans , 2000, Current Biology.

[65]  Mike Tyers,et al.  The GRID: The General Repository for Interaction Datasets , 2003, Genome Biology.

[66]  Michael Snyder,et al.  ChIP-chip: a genomic approach for identifying transcription factor binding sites. , 2002, Methods in enzymology.

[67]  Mark Gerstein,et al.  Structural proteomics of an archaeon , 2000, Nature Structural Biology.

[68]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[69]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[70]  Steve D. M. Brown,et al.  A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse , 2000, Nature Genetics.

[71]  T. Hughes,et al.  Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. , 2000, Science.

[72]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[73]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Kononen,et al.  Tissue microarrays for high-throughput molecular profiling of tumor specimens , 1998, Nature Medicine.

[75]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[76]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[77]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[78]  G. Dressler Tubulogenesis in the developing mammalian kidney. , 2002, Trends in cell biology.

[79]  J. Bonifacino,et al.  Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[80]  M. Gerstein,et al.  Integrating Interactomes , 2002, Science.

[81]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[82]  B. Weinstein Vascular cell biology in vivo: a new piscine paradigm? , 2002, Trends in cell biology.

[83]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[84]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[85]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[86]  K Nasmyth,et al.  Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin‐ and Dbf4‐dependent kinases , 1998, The EMBO journal.

[87]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[88]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[89]  Ronald W. Davis,et al.  Systematic screen for human disease genes in yeast , 2002, Nature Genetics.

[90]  L. Stein Creating a bioinformatics nation , 2002, Nature.

[91]  Y. Dor,et al.  Making vascular networks in the adult: branching morphogenesis without a roadmap. , 2003, Trends in cell biology.

[92]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[93]  Nebojsa Mirkovic,et al.  ModBase, a database of annotated comparative protein structure models, and associated resources , 2010, Nucleic Acids Res..

[94]  A. Galarneau,et al.  Detection and visualization of protein interactions with protein fragment complementation assays. , 2002, Methods in molecular biology.

[95]  Peter D. Karp,et al.  Evaluation of computational metabolic-pathway predictions for Helicobacter pylori , 2002, Bioinform..

[96]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[97]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[98]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[100]  T. Graves,et al.  Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. , 2001, Genome research.

[101]  H. Bussey,et al.  A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. , 2003, Genetics.

[102]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[103]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[104]  Leslie M Loew,et al.  Computational cell biology: spatiotemporal simulation of cellular events. , 2002, Annual review of biophysics and biomolecular structure.

[105]  Dean Y. Li,et al.  Extracellular matrix in vascular morphogenesis and disease: structure versus signal. , 2003, Trends in cell biology.

[106]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[107]  Kei-Hoi Cheung,et al.  An integrated approach for finding overlooked genes in yeast , 2002, Nature Biotechnology.

[108]  J. Rine,et al.  Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix. , 1999, Journal of lipid research.

[109]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[110]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[111]  E. Anderson Hudson et al. , 1977 .

[112]  Marc Vidal,et al.  Integrating Interactome, Phenome, and Transcriptome Mapping Data for the C. elegans Germline , 2002, Current Biology.

[113]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[114]  Shoshana J. Wodak,et al.  From Molecular Activities and Processes to Biological Function , 2001, Briefings Bioinform..

[115]  P. Uetz Two-hybrid arrays. , 2002, Current opinion in chemical biology.

[116]  Gary D. Bader,et al.  SeqHound: biological sequence and structure database as a platform for bioinformatics research , 2002, BMC Bioinformatics.

[117]  Mark Gerstein,et al.  Bridging structural biology and genomics: assessing protein interaction data with known complexes. , 2002, Trends in genetics : TIG.

[118]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO) , 2002, Nucleic Acids Res..

[119]  Bernhard O. Palsson,et al.  Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions , 2000, BMC Bioinformatics.

[120]  B. Chait,et al.  Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome , 2001, Nature Biotechnology.

[121]  B O Palsson,et al.  Metabolic modeling of microbial strains in silico. , 2001, Trends in biochemical sciences.

[122]  Robert H Singer,et al.  Gene expression and the myth of the average cell. , 2003, Trends in cell biology.

[123]  M. Gerstein,et al.  Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. , 2001, Genome research.

[124]  Nikolay A. Kolchanov,et al.  GeneNet: a database on structure and functional organisation of gene networks , 2002, Nucleic Acids Res..

[125]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[126]  M. Vidal A Biological Atlas of Functional Maps , 2001, Cell.

[127]  R. Brent,et al.  Modelling cellular behaviour , 2001, Nature.

[128]  Charles Boone,et al.  A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Ioannis Xenarios,et al.  Microarray Deacetylation Maps Determine Genome-Wide Functions for Yeast Histone Deacetylases , 2002, Cell.

[130]  D Botstein,et al.  Suppressors of yeast actin mutations. , 1989, Genetics.

[131]  E. Phizicky,et al.  Genomic analysis of biochemical function. , 2001, Current opinion in chemical biology.

[132]  Gaetano T. Montelione,et al.  Structural genomics: An approach to the protein folding problem , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[134]  S. Fields,et al.  Proteomics. Proteomics in genomeland. , 2001, Science.

[135]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[136]  Hanno Steen,et al.  Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. , 2002, Trends in biotechnology.

[137]  Philip R. Gafken,et al.  Dot1p Modulates Silencing in Yeast by Methylation of the Nucleosome Core , 2002, Cell.

[138]  S. Fields Proteomics in Genomeland , 2001, Science.

[139]  Marc Vidal,et al.  WorfDB: the Caenorhabditis elegans ORFeome Database , 2003, Nucleic Acids Res..

[140]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.