In-Memory Data and Process Management

Today, the affordability of commodity hardware with multi-core CPUs and several terabytes of main memory has enabled enterprises to change the way of how they operate their businesses. With the ability to hold the entire data set of an application in main memory, it is now possible to unify transactional and analytical data processing to provide a single source of real-time data. This allows decision-makers to better understand their enterprises, quickly adapt to business transformations, and swiftly react to unexpected influences at a lower cost of operating IT systems. In this chapter, we first provide an overview of the potential benefits and applications of in-memory data management. Furthermore, we discuss the technological foundations and feasibility of this technology in detail. Finally, we present a bypass solution for a non-disruptive transition to in-memory data management in the context of an enterprise IT architecture.

[1]  Martin L. Kersten,et al.  Database Architecture Optimized for the New Bottleneck: Memory Access , 1999, VLDB.

[2]  Alexander Zeier,et al.  Enterprise Application-Specific Data Management , 2010, 2010 14th IEEE International Enterprise Distributed Object Computing Conference.

[3]  Sven Helmer,et al.  The implementation and performance of compressed databases , 2000, SGMD.

[4]  Alexander Zeier,et al.  HYRISE - A Main Memory Hybrid Storage Engine , 2010, Proc. VLDB Endow..

[5]  Alexander Zeier,et al.  Xsellerate: supporting sales representatives with real-time information in customer dialogs , 2011, IMDM.

[6]  Martin L. Kersten,et al.  Optimizing database architecture for the new bottleneck: memory access , 2000, The VLDB Journal.

[7]  Martin L. Kersten,et al.  Generic Database Cost Models for Hierarchical Memory Systems , 2002, VLDB.

[8]  Alexander Zeier,et al.  A Cost-Aware Strategy for Merging Differential Stores in Column-Oriented In-Memory DBMS , 2011, BIRTE.

[9]  Gordon V. Cormack,et al.  Data compression on a database system , 1985, CACM.

[10]  Alexander Zeier,et al.  A case for online mixed workload processing , 2010, DBTest '10.

[11]  Paul Mcfedries Information at your fingertips , 2009 .

[12]  Martin Grund,et al.  A Demonstration of HYRISE - A Main Memory Hybrid Storage Engine , 2011, Proc. VLDB Endow..

[13]  Joos-Hendrik Böse,et al.  Efficient logging for enterprise workloads on column-oriented in-memory databases , 2012, CIKM '12.

[14]  Jim Gray,et al.  A critique of ANSI SQL isolation levels , 1995, SIGMOD '95.

[15]  Daniel J. Abadi,et al.  Integrating compression and execution in column-oriented database systems , 2006, SIGMOD Conference.

[16]  Alexander Zeier,et al.  In-Memory Data Management: Technology and Applications , 2012 .

[17]  David J. DeWitt,et al.  Materialization Strategies in a Column-Oriented DBMS , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[18]  Hasso Plattner,et al.  SanssouciDB: An In-Memory Database for Processing Enterprise Workloads , 2011, BTW.

[19]  Alexander Zeier,et al.  Data structures for mixed workloads in in-memory databases , 2010, 5th International Conference on Computer Sciences and Convergence Information Technology.

[20]  Michael Stonebraker,et al.  C-Store: A Column-oriented DBMS , 2005, VLDB.

[21]  Nihar R. Mahapatra,et al.  The processor-memory bottleneck: problems and solutions , 1999, CROS.

[22]  Jan vom Brocke,et al.  How In-memory Technology Can Create Business Value: Insights from the Hilti Case , 2014, Commun. Assoc. Inf. Syst..

[23]  Michael Stonebraker,et al.  Implementation techniques for main memory database systems , 1984, SIGMOD '84.

[24]  Hector Garcia-Molina,et al.  Main Memory Database Systems: An Overview , 1992, IEEE Trans. Knowl. Data Eng..

[25]  Marcin Zukowski,et al.  MonetDB/X100: Hyper-Pipelining Query Execution , 2005, CIDR.