Magnetic properties and magnetocaloric effect of the HoAgGa compound

Magnetic properties and magnetocaloric effect (MCE) of the HoAgGa compound are investigated by magnetization and heat capacity measurements. A giant reversible MCE was observed around TC = 7.2 K. The maximum values of magnetic entropy change and adiabatic temperature are found to be 16 J kg−1 K−1 and 6 K, respectively, with a refrigerant capacity value of 262 J kg−1 for field change of 5 T. These magnetocaloric parameters also remain large for a wide range of temperature above TC. The large MCE as well as no hysteresis loss make HoAgGa an attractive candidate for low temperature magnetic refrigerant.

[1]  B. Shen,et al.  Large reversible magnetocaloric effects in ErFeSi compound under low magnetic field change around liquid hydrogen temperature , 2013 .

[2]  G. Nolas,et al.  Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials , 2011 .

[3]  Z. Qian,et al.  Giant magnetocaloric effect in antiferromagnetic borocarbide superconductor RNi2B2C (R = Dy, Ho, and Er) compounds , 2011 .

[4]  R. Pöttgen,et al.  Large reversible magnetocaloric effect due to a rather unstable antiferromagnetic ground state in Er4NiCd , 2010 .

[5]  R. D. Dos Reis,et al.  Study of the magnetocaloric properties of the antiferromagnetic compounds RGa2 (R = Ce, Pr, Nd, Dy, Ho and Er) , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[7]  C. M. Bonilla,et al.  Universal behavior for magnetic entropy change in magnetocaloric materials: An analysis on the nature of phase transitions , 2010 .

[8]  F. Guillou,et al.  Coexistence of inverse and normal magnetocaloric effect in A-site ordered NdBaMn2O6 , 2010 .

[9]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[10]  Lingwei Li,et al.  Giant reversible magnetocaloric effect in antiferromagnetic superconductor Dy0.9Tm0.1Ni2B2C compound , 2009 .

[11]  H. Srikanth,et al.  Magnetocaloric effect and refrigerant capacity in charge-ordered manganites , 2009 .

[12]  T. Samanta,et al.  Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound , 2007 .

[13]  L. P. Cardoso,et al.  Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFexAs , 2006, Nature materials.

[14]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[15]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[16]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[17]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[18]  R. Ferro,et al.  Ternary intermetallic RAgGa, RAuGa alloys (R=light rare earth and Yb) , 2001 .

[19]  Richard Chahine,et al.  Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .

[20]  V. Pecharsky,et al.  Recent Developments in Magnetic Refrigeration , 1999 .

[21]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[22]  J. Glanz Making a Bigger Chill With Magnets , 1998, Science.

[23]  M. Kolenda,et al.  Magnetic properties of RAgGa (R Tb, Dy, Ho) compounds , 1996 .

[24]  L. Sill,et al.  Magnetic characteristics of RAgGa compounds , 1984 .

[25]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[26]  W. Bragg,et al.  The effect of thermal agitation on atomic arrangement in alloys , 1935 .

[27]  J. Romero Gómez,et al.  Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration , 2013 .

[28]  H. Wada,et al.  Extremely Large Magnetic Entropy Change of MnAs1-xSbx near Room Temperature. , 2002 .

[29]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .